Advertisement

Multivariate Signature Scheme Using Quadratic Forms

  • Takanori Yasuda
  • Tsuyoshi Takagi
  • Kouichi Sakurai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7932)

Abstract

Multivariate Public Key Cryptosystems (MPKC) are candidates for post-quantum cryptography. MPKC has an advantage in that its encryption and decryption are relatively efficient. In this paper, we propose a multivariate signature scheme using quadratic forms. For a finite dimensional vector space V, it is known that there are exactly two equivalence classes of non-degenerate quadratic forms over V. We utilize the method to transform any non-degenerate quadratic form into the normal form of either of the two equivalence classes in order to construct a new signature scheme in MPKC. The signature generation of our scheme is between eight and nine times more efficient more than the multivariate signature scheme Rainbow at the level of 88-bit security. We show that the public keys of our scheme can not be represented by the public keys of other MPKC signature schemes and this means our scheme is immune to many attacks that depend on the form of the central map used by these schemes.

Keywords

Multivariate Public Key Cryptosystem Digital signature Rainbow Post-quantum cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshel, I., Anshel, M., Goldfeld, D.: An Algebraic Method for Public-Key Cryptography. Math. Res. Lett. 6(3-4), 287–291 (1999)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography. Springer, Heidelberg (2009)zbMATHCrossRefGoogle Scholar
  3. 3.
    Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Billet, O., Gilbert, H.: Cryptanalysis of Rainbow. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less Than N 0.292. IEEE Trans. Inform. Theory 46(4), 1339–1349 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bouillaguet, C., Fouque, P.-A., Véber, A.: Graph-Theoretic Algorithms for the Isomorphism of Polynomials Problem. IACR Cryptology ePrint Archive Report 2012/607Google Scholar
  7. 7.
    Bouillaguet, C., Faugère, J.-C., Fouque, P.-A., Perret, L.: Practical Cryptanalysis of the Identification Scheme Based on the Isomorphism of Polynomial with One Secret Problem. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 473–493. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE Implementation of Multivariate PKCs on Modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems. Advances in Information Security, vol. 25. Springer (2006)Google Scholar
  10. 10.
    Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signature Scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Farb, B., Dennis, K.: Noncommutative Algebra. In: Graduate Texts in Mathematics. Springer (1993); ACNS 2008Google Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., Ltd. (1979)Google Scholar
  14. 14.
    Galbraith, S.D., Ruprai, R.S.: Using Equivalence Classes to Accelerate Solving the Discrete Logarithm Problem in a Short Interval. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 368–383. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM Cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Hashimoto, Y., Sakurai, K.: On Construction of Signature Schemes based on Birational Permutations over Noncommutative Rings. In: Proceedings of the 1st International Conference on Symbolic Computation and Cryptography (SCC 2008), pp. 218–227 (2008)Google Scholar
  17. 17.
    Ko, K.H., Lee, S.-J., Cheon, J.H., Han, J.W., Kang, J.-S., Park, C.-S.: New Public-Key Cryptosystem Using Braid Groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Lin, D., Faugère, J.-C., Perret, L., Wang, T.: On Enumeration of Polynomial Equivalence Classes and Their Application to MPKC. Cryptology ePrint Archive: Report 2011/055Google Scholar
  21. 21.
    Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic Applications. Journal of Cryptology 12, 1–28 (1999)zbMATHCrossRefGoogle Scholar
  23. 23.
    Petzoldt, A., Bulygin, S., Buchmann, J.: A Multivariate Signature Scheme with a Partially Cyclic Public Key. In: Proceedings of the Second International Conference on Symbolic Computation and Cryptography (SCC 2010), pp. 229–235 (2010)Google Scholar
  24. 24.
    Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting Parameters for the Rainbow Signature Scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218–240. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – A Multivariate Signature Scheme with a Partially Cyclic Public Key. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Petzoldt, A., Bulygin, S., Buchmann, J.: Linear Recurring Sequences for the UOV Key Generation. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 335–350. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Patarin, J., Goubin, L., Courtois, N.T.: Improved Algorithms for Isomorphisms of Polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–200. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  29. 29.
    Petzoldt, A., Thomae, E., Bulygin, S., Wolf, C.: Small Public Keys and Fast Verification for \(\mathcal{M}\)ultivariate \(\mathcal{Q}\)uadratic Public Key Systems. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 475–490. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Pollard, J.M.: Monte Carlo Methods for Index Computation mod p. Mathmatics of Computation 143(32), 918–924 (1978)MathSciNetGoogle Scholar
  31. 31.
    Rai, T.S.: Infinite Gröbner Bases and Noncommutative Polly Cracker Cryptosystems. PhD Thesis, Virginia Polytechnique Institute and State Univ. (2004)Google Scholar
  32. 32.
    Scharlau, W.: Quadratic and Hermitian Forms. Springer (1987)Google Scholar
  33. 33.
    Wiener, M.J.: Cryptanalysis of Short RSA Secret Exponents. IEEE Trans. Inform. Theory 36(3), 553–558 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Yang, B.-Y., Chen, J.-M.: Building Secure Tame-like Multivariate Public-Key Cryptosystems: The New TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. 35.
    Yang, B.-Y., Chen, J.-M.: All in the XL Family: Theory and Practice. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Yang, B.-Y., Chen, J.-M.: All in the XL Family: Theory and Practice. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Yasuda, T., Sakurai, K.: A security analysis of uniformly-layered Rainbow — Revisiting Sato-Araki’s Non-commutative Approach to Ong-Schnorr-Shamir Signature Towards PostQuantum Paradigm. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 275–294. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takanori Yasuda
    • 1
  • Tsuyoshi Takagi
    • 2
  • Kouichi Sakurai
    • 1
    • 3
  1. 1.Institute of Systems, Information Technologies and NanotechnologiesKyushu UniversityJapan
  2. 2.Institute of Mathematics for IndustryKyushu UniversityJapan
  3. 3.Department of InformaticsKyushu UniversityJapan

Personalised recommendations