Skip to main content

A Classification of Differential Invariants for Multivariate Post-quantum Cryptosystems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 7932)

Abstract

Multivariate Public Key Cryptography(MPKC) has become one of a few options for security in the quantum model of computing. Though a few multivariate systems have resisted years of effort from the cryptanalytic community, many such systems have fallen to a surprisingly small pool of techniques. There have been several recent attempts at formalizing more robust security arguments in this venue with varying degrees of applicability. We present an extension of one such recent measure of security against a differential adversary which has the benefit of being immediately applicable in a general setting on unmodified multivariate schemes.

Keywords

  • Matsumoto-Imai
  • multivariate public key cryptography
  • differential
  • symmetry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38616-9_11
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-38616-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, A.I.T., Chen, M.S., Chen, T.R., Cheng, C.M., Ding, J., Kuo, E.L.H., Lee, F.Y.S., Yang, B.Y.: Sse implementation of multivariate pkcs on modern x86 cpus. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  2. Chen, A.I.-T., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M., Yang, B.-Y.: Practical-sized instances of multivariate pKCs: Rainbow, TTS, and ℓIC-derivatives. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 95–108. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  3. Yang, B.-Y., Cheng, C.-M., Chen, B.-R., Chen, J.-M.: Implementing minimized multivariate PKC on low-resource embedded systems. In: Clark, J.A., Paige, R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 73–88. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  4. Sakumoto, K., Shirai, T., Hiwatari, H.: On provable security of uov and hfe signature schemes against chosen-message attack. In: [19], pp. 68–82.

    Google Scholar 

  5. Huang, Y.J., Liu, F.H., Yang, B.Y.: Public-key cryptography from new multivariate quadratic assumptions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 190–205. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  6. Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.-S.: Square, a New Multivariate Encryption Scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–264. Springer, Heidelberg (2009)

    Google Scholar 

  7. Baena, J., Clough, C., Ding, J.: Square-vinegar signature scheme. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 17–30. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  8. Billet, O., Macario-Rat, G.: Cryptanalysis of the square cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 451–468. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical Cryptanalysis of SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  10. Kipnis, A., Shamir, A.: Cryptanalysis of the oil & vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  11. Smith-Tone, D.: On the differential security of multivariate public key cryptosystems. In: [19], pp. 130–142.

    Google Scholar 

  12. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)

    Google Scholar 

  13. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

    CrossRef  Google Scholar 

  14. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  15. Patarin, J.: The oil and vinegar algorithm for signatures. In: Presented at the Dagsthul Workshop on Cryptography (1997)

    Google Scholar 

  16. Ding, J., Dubois, V., Yang, B.-Y., Chen, O.C.-H., Cheng, C.-M.: Could SFLASH be repaired? In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 691–701. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  17. Bettale, L., Faugère, J.C., Perret, L.: Cryptanalysis of multivariate and odd-characteristic hfe variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  18. Ding, J., Kleinjung, T.: Degree of regularity for hfe-. IACR Cryptology ePrint Archive 2011, 570 (2011)

    Google Scholar 

  19. Yang, B.-Y. (ed.): PQCrypto 2011. LNCS, vol. 7071. Springer, Heidelberg (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perlner, R., Smith-Tone, D. (2013). A Classification of Differential Invariants for Multivariate Post-quantum Cryptosystems. In: Gaborit, P. (eds) Post-Quantum Cryptography. PQCrypto 2013. Lecture Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38616-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38616-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38615-2

  • Online ISBN: 978-3-642-38616-9

  • eBook Packages: Computer ScienceComputer Science (R0)