Advertisement

Chaos Driven Differential Evolution with Lozi Map in the Task of Chemical Reactor Optimization

  • Roman Senkerik
  • Donald Davendra
  • Ivan Zelinka
  • Michal Pluhacek
  • Zuzana Kominkova Oplatkova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7895)

Abstract

In this paper, Differential Evolution (DE) is used in the task of optimization of batch reactor geometry. The novality of the approach is that a discrete chaotic Lozi map is used as the chaotic pseudo random number generator to drive the mutation and crossover process in DE. The results obtained are compared with original reactor geometry and process parameters adjustment. The statistical analysis of the results given by chaos driven DE is compared with canonical DE strategy.

Keywords

Differential evolution Chaos Lozi map Optimization Reactor geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence 20, 89–99 (2007)CrossRefGoogle Scholar
  2. 2.
    Silva, V.V.R., Khatib, W., Fleming, P.J.: Performance optimization of gas turbine engine. Engineering Applications of Artificial Intelligence 18, 575–583 (2005)CrossRefGoogle Scholar
  3. 3.
    Tan, W.W., Lu, F., Loh, A.P., Tan, K.C.: Modeling and control of a pilot pH plant using genetic algorithm. Engineering Applications of Artificial Intelligence 18, 485–494 (2005)CrossRefGoogle Scholar
  4. 4.
    Lepore, R., Wouwer, A.V., Remy, M., Findeisen, R., Nagy, Z., Allger, F.: Optimization strategies for a MMA polymerization reactor. Computers and Chemical Engineering 31, 281–291 (2007)CrossRefGoogle Scholar
  5. 5.
    Rout, B.K., Mittal, R.K.: Optimal manipulator parameter tolerance selection using evolutionary optimization technique. Engineering Applications of Artificial Intelligence 21, 509–524 (2008)CrossRefGoogle Scholar
  6. 6.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010) ISSN 0898-1221Google Scholar
  7. 7.
    Senkerik, R., Davendra, D., Zelinka, I., Oplatkova, Z., Pluhacek, M.: Optimization of the Batch Reactor by Means of Chaos Driven Differential Evolution. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 93–102. Springer, Heidelberg (2013) ISBN: 978-3-642-32922-7CrossRefGoogle Scholar
  8. 8.
    Pluhacek, M., Budikova, V., Senkerik, R., Oplatkova, Z., Zelinka, I.: On the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map – an Initial Study. In: Proceedings of the 18th International Conference on Soft Computing, MENDEL 2012, pp. 40–45 (2012) ISBN 978-80-214-4540-6Google Scholar
  9. 9.
    Silva, C.M., Biscaia, E.C.: Genetic algorithm development for multi-objective optimization of batch free-radical polymerization reactors. Computers and Chemical Engineering 27, 1329–1344 (2003)CrossRefGoogle Scholar
  10. 10.
    Arpornwichanop, A., Kittisupakorn, P., Mujtaba, M.I.: On-line dynamic optimization and control strategy for improving the performance of batch reactors. Chemical Engineering and Processing 44(1), 101–114 (2005)CrossRefGoogle Scholar
  11. 11.
    Srinisavan, B., Palanki, S., Bonvin, D.: Dynamic optimization of batch processes I. Characterization of the nominal solution. Computers and Chemical Engineering 27, 1–26 (2002)CrossRefGoogle Scholar
  12. 12.
    Srinisavan, B., Palanki, S., Bonvin, D.: Dynamic optimization of batch processes II. Role of Measurement in handling uncertainly. Computers and Chemical Engineering 27, 27–44 (2002)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Zhou, D., Gao, F.: Iterative learning model predictive control for multi-phase batch processes. Journal of Process Control 18, 543–557 (2008)CrossRefGoogle Scholar
  14. 14.
    Cho, W., Edgar, T.F., Lee, J.: Iterative learning dual-mode control of exothermic batch reactors. Control Engineering Practice 16, 1244–1249 (2008)CrossRefGoogle Scholar
  15. 15.
    Beyer, M.A., Grote, W., Reinig, G.: Adaptive exact linearization control of batch polymerization reactors using a Sigma-Point Kalman Filter. Journal of Process Control 18, 663–675 (2008)CrossRefGoogle Scholar
  16. 16.
    Sarma, P.: Multivariable gain-scheduled fuzzy logic control of an exothermic reactor. Engineering Applications of Artificial Intelligence 14, 457–471 (2001)CrossRefGoogle Scholar
  17. 17.
    Sberg, J., Mukul, A.: Trajectory tracking in batch processes using neural controllers. Engineering Applications of Artificial Intelligence 15, 41–51 (2002)CrossRefGoogle Scholar
  18. 18.
    Mukherjee, A., Zhang, J.: A reliable multi-objective control strategy for batch processes based on bootstrap aggregated neural network models. Journal of Process Control 18, 720–734 (2008)CrossRefGoogle Scholar
  19. 19.
    Mujtaba, M., Aziz, N., Hussain, M.A.: Neural network based modelling and control in batch reactor. Chemical Engineering Research and Design 84(8), 635–644 (2006)CrossRefGoogle Scholar
  20. 20.
    Causa, J., Karer, G., Nunez, A., Saez, D., Skrjanc, I., Zupancic, B.: Hybrid fuzzy predictive control based on genetic algorithms for the temperature control of a batch reactor. Computers and Chemical Engineering (2008), doi:10.1016/j.compchemeng, 05.014Google Scholar
  21. 21.
    Altinten, A., Ketevanlioglu, F., Erdogan, S., Hapoglu, H., Alpbaz, M.: Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm. Chemical Engineering Journal 138, 490–497 (2008)CrossRefGoogle Scholar
  22. 22.
    Faber, R., Jockenhel, T., Tsatsaronis, G.: Dynamic optimization with simulated annealing. Computers and Chemical Engineering 29, 273–290 (2005)CrossRefGoogle Scholar
  23. 23.
    Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999) ISBN 007-709506-5Google Scholar
  24. 24.
    Price, K., Storn, R.: Differential evolution homepage (2001), http://www.icsi.berkeley.edu/~storn/code.html
  25. 25.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)CrossRefGoogle Scholar
  26. 26.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roman Senkerik
    • 1
  • Donald Davendra
    • 2
  • Ivan Zelinka
    • 2
  • Michal Pluhacek
    • 1
  • Zuzana Kominkova Oplatkova
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations