Instance Selection in Logical Rule Extraction for Regression Problems

  • Mirosław Kordos
  • Szymon Białka
  • Marcin Blachnik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7895)


The paper presents three algorithms of instance selection for regression problems, which extend the capabilities of the CNN, ENN and CA algorithms used for classification tasks. Various combinations of the algorithms are experimentally evaluated as data preprocessing for regression tree induction. The influence of the instance selection algorithms and their parameters on the accuracy and rules produced by regression trees is evaluated and compared to the results obtained with tree pruning.


Regression Tree Regression Problem Logical Rule Instance Selection Tree Pruning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information Theory 14, 515–516 (1968)CrossRefGoogle Scholar
  2. 2.
    Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics 2, 408–421 (1972)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Transactions on Computers 23, 1179–1184 (1974)zbMATHCrossRefGoogle Scholar
  4. 4.
    Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algorithms. Machine Learning 38, 251–268 (2000)CrossRefGoogle Scholar
  5. 5.
    Cameron-Jones, R.M.: Instance selection by encoding length heuristic with random mutation hill climbing. In: The Eighth Australian Joint Conference on Artificial Intelligence, pp. 99–106 (1995)Google Scholar
  6. 6.
    Salvador, G., Derrac, J., Ramon, C.: Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 417–435 (2012)CrossRefGoogle Scholar
  7. 7.
    Jankowski, N., Grochowski, M.: Comparison of instances seletion algorithms I. Algorithms survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Kordos, M., Blachnik, M., Wieczorek, T.: Temperature Prediction in Electric Arc Furnace ith Neural Network Tree. In: Honkela, T. (ed.) ICANN 2011, Part II. LNCS, vol. 6792, pp. 71–78. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Zhang, J., et al.: Intelligent selection of instances for prediction functions in lazy learning algorithms. Artifcial Intelligence Review 11, 175–191 (1997)CrossRefGoogle Scholar
  10. 10.
    Tolvi, J.: Genetic algorithms for outlier detection and variable selection in linear regression models. Soft Computing 8, 527–533 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Guillen, A., et al.: Applying Mutual Information for Prototype or Instance Selection in Regression Problems. In: ESANN 2009 Proceedings (2009)Google Scholar
  12. 12.
    Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for understanding of data. Proceedings of the IEEE 92(5), 771–805 (2008)CrossRefGoogle Scholar
  13. 13.
    Wu, S.: Optimal instance selection for decision tree, PhD dissertation. Iowa State university (2007)Google Scholar
  14. 14.
    Ramon Cano, J., Herrera, F., Lozano, M.: Evolutionary Stratified Training Set Selection for Extracting Classification Rules with Trade off Precision-Interpretability. Data and Knowledge Engineering 60, 90–108 (2006)CrossRefGoogle Scholar
  15. 15.
    Kordos, M., Blachnik, M., Strzempa, D.: Do We Need Whatever More Than k-NN? In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 414–421. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Kordos, M., Blachnik, M., Perzyk, M., Kozłowski, J., Bystrzycki, O., Gródek, M., Byrdziak, A., Motyka, Z.: A Hybrid System with Regression Trees in Steel-Making Process. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 222–230. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    Merz, C., Murphy, P.: UCI repository of machine learning databases,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mirosław Kordos
    • 1
  • Szymon Białka
    • 1
  • Marcin Blachnik
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of Bielsko-BialaBielsko-BiałaPoland
  2. 2.Department of Management and InformaticsSilesian University of TechnologyKatowicePoland

Personalised recommendations