Skip to main content

Production of Dicarboxylic Acids and Flagrances by Yarrowia lipolytica

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 25))

Abstract

Yeasts are excellent biocatalysts in the field of alkane and fatty acids transformation into dicarboxylic acids and lactones. Their ability to produce some diacids through simple, less expensive and more environment friendly routes than chemical pathways and to produce particular diacids (e.g. unsaturated ones) but also to transform natural substrates into lactones with a natural label has made them the subject of many researches. Although Candida species were often first studied, the development of genetic tools, the knowledge of the genome and some genomic and biotechnological particularities of Yarrowia lipolytica resulted to interesting developments with this species. This chapter aims at presenting the family of compounds of interest of this field, the biotechnological strategies usually carried out with yeast biocatalysts and the developments obtained with Y. lipolytica. For dicarboxylic acids, the first complete strategies carried out with Candida sp. will be presented, followed by the works on Yarrowia. For lactones, the work on Yarrowia’s β-oxidation and on the production of γ-decalactone will be particularly detailed. The interactions of amphiphilic fatty acids and lactones with yeast membranes will be also presented as they are of importance for both processes and have not been much investigated in other yeast species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguedo M, Beney L, Waché Y, Belin J-M, Gervais P (2002) Interaction of odorous lactones with phospholipids: implications in toxicity towards producing yeast cells. Biotechnol Lett 24:1975–1979

    Article  CAS  Google Scholar 

  • Aguedo M, Beney L, Waché Y, Belin JM (2003a) Interaction of an odorant lactone with model phospholipid bilayers and its strong fluidizing action in yeast membrane. Int J Food Microbiol 80:211–215

    Article  PubMed  Google Scholar 

  • Aguedo M, Beney L, Waché Y, Belin JM (2003b) Mechanisms underlying the toxicity of lactone aroma compounds towards the producing yeast cells. J Appl Microbiol 94:258–265

    Article  PubMed  CAS  Google Scholar 

  • Anonym (2010) The Good Scent Company. http://www.thegoodscentscompany.com/data/rw1012281.html#tosupp. Accessed 18 Jan 2010

  • Bartlett K, Hovik R, Eaton S, Watmough NJ, Osmundsen H (1990) Intermediates of peroxisomal beta-oxidation. Biochem J 270:175–180

    PubMed  CAS  Google Scholar 

  • Blin-Perrin C et al (2000) Metabolism of ricinoleic acid into gamma-decalactone: beta-oxidation and long chain acyl intermediates of ricinoleic acid in the genus Sporidiobolus sp. FEMS Microbiol Lett 188:69–74

    PubMed  CAS  Google Scholar 

  • Druaux C, Lubbers S, Charpentier C, Voilley A (1995) Effects of physico-chemical parameters of a model wine on the binding of gamma-decalactone on bovine serum albumin. Food Chem 53:203–207

    Article  CAS  Google Scholar 

  • Dufossé LH, Souchon I, Feron G, Latrasse A, Spinnler HE (1997) Strategies to overcome toxicity during flavour production by micro-organisms: the case of g-decalactone from Sporidiobolus salmonicolor. Riv. Ital. EPPOS Spec. Num.:284–298

    Google Scholar 

  • Dufossé L, Souchon II, Feron G, Latrasse A, Spinnler HE (1999) In situ detoxification of the fermentation medium during gamma-decalactone production with the yeast Sporidiobolus salmonicolor. Biotechnol Prog 15:135–139

    Article  PubMed  Google Scholar 

  • Endrizzi A, Pagot Y, Le Clainche A, Nicaud J-M, Belin J-M (1996) Production of lactones and peroxisomal beta-oxidation in yeasts. Crit Rev Biotechnol 16:301–329

    Article  PubMed  CAS  Google Scholar 

  • Escamilla García E, Belin J-M, Waché Y (2007a) Use of a Doehlert factorial design to investigate the effects of pH and aeration on the accumulation of lactones by Yarrowia lipolytica. J Appl Microbiol 103:1508–1515

    Article  PubMed  Google Scholar 

  • Escamilla García E, Nicaud J-M, Belin J-M, Waché Y (2007b) Effect of acyl-CoA oxidase activity on the accumulation of gamma-decalactone by the yeast Yarrowia lipolytica: a factorial approach. Biotechnol J 2:1280–1285

    Article  Google Scholar 

  • Escamilla García E et al (2009) Production of 3-hydroxy-gamma-decalactone, the precursor of two decenolides with flavouring properties, by the yeast Yarrowia lipolytica. J Mol Catal B 57:22–26

    Article  Google Scholar 

  • Feron G, Dufossé L, Mauvais G, Bonnarme P, Spinnler HE (1997) Fatty acid accumulation in the yeast Sporidiobolus salmonicolor during batch production of gamma-decalactone. FEMS Microbiol Lett 149:17–24

    Article  PubMed  CAS  Google Scholar 

  • Fickers P et al (2005) Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  PubMed  CAS  Google Scholar 

  • Fickers P, Sauveplane V, Nicaud JM (2013) The lipases from Y. lipolytica: genetics, production, regulation and biochemical characterisation. In: Barth G (ed) Yarrowia lipolytica. Springer, Heidelberg

    Google Scholar 

  • Fráter G, Bajgrowicz JA, Kraft P (1998) Fragrance chemistry (Review Article). Tetrahedron 54(27):7633–7703

    Article  Google Scholar 

  • Fukuda R, Ohta A (2013) Utilization of hydrophobic substrates by Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica. Springer, Heidelberg

    Google Scholar 

  • Gatfield IL (1999) Biotechnological production of natural flavor materials. In: Teranishi R, Wick EL, Hornstein I (eds) Flavor chemistry, thirty years of progress. Kluwer, Plenum, New York, pp 211–227

    Chapter  Google Scholar 

  • Gatfield IL, Güntert M, Sommer H, Werkhoff P (1993) Some aspects of the microbiological production of flavor-active lactones with particular reference to gamma-decalactone. Chem Mikrobiol Technol Lebensm 15:165–170

    CAS  Google Scholar 

  • Groguenin A et al (2004) Genetic engineering of the beta-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds. J Mol Catal B 28:75–79

    Article  CAS  Google Scholar 

  • Gruszecki WI, Sielewiesiuk J (1990) Orientation of xanthophylls in phosphatidylcholine multibilayers. Biochim Biophys Acta 1023:405–412

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Ohta A, Takagi M (1998) Cloning and characterization of an n-alkane-inducible cytochrome P450 gene essential for n-decane assimilation by Yarrowia lipolytica. Yeast 14:1387–1397

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Sumita T, Ohta A, Takagi M (2000) The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16:1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Kaneyuki H, Ogata K (1975) Method for producing dicarboxylic acids by microorganisms. Patent US3912586

    Google Scholar 

  • Kise S, Furukawa T (1983) Production of dicarboxylic acid. Patent JP58121797

    Google Scholar 

  • Kogure T, Horiuchi H, Matsuda H, Arie M, Takagi M, Ohta A (2007) Enhanced induction of cytochromes P450alk that oxidize methyl-ends of n-alkanes and fatty acids in the long-chain dicarboxylic acid-hyperproducing mutant of Candida maltosa. FEMS Microbiol Lett 271:106–111

    Article  PubMed  CAS  Google Scholar 

  • Lockshon D, Surface LE, Kerr EO, Kaeberlein M, Kennedy BK (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175:77–91

    Article  PubMed  CAS  Google Scholar 

  • Marvey BB (2008) Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis. Int J Mol Sci 9:1393–1406

    Article  PubMed  CAS  Google Scholar 

  • Mauersberger S, Matiashova RN (1980) Cytochrome P-450 content in yeast cells during growth on hexadecane. Mikrobiologiia 49:571–577

    PubMed  CAS  Google Scholar 

  • Mauersberger S, Schunck WH, Muller HH (1981) The induction of cytochrome P-450 in Lodderomyces elongisporus. Z Allg Mikrobiol 21:313–321

    Article  PubMed  CAS  Google Scholar 

  • Mobley DP, Shank GK (2000) Method for high specific bioproductivity of alpha, omega-alkane dicarboxylic acids using Candida tropicalis. Patent WO0017380

    Google Scholar 

  • Nicaud J, Theveniau F, Le Dall M, Marchal R (2006). Production d’acides dicarboxyliques par des souches mutantes améliorées de Yarrowia lipolytica. Patent FR2879215

    Google Scholar 

  • Ohkuma M, Masuda Y, Park SM, Ohtomo R, Ohta A, Takagi M (1995a) Evidence that the expression of the gene for NADPH-cytochrome P-450 reductase is n-alkane-inducible in Candida maltosa. Biosci Biotechnol Biochem 59:1328–1330

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Muraoka S, Tanimoto T, Fujii M, Ohta A, Takagi M (1995b) CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol 14:163–173

    Article  PubMed  CAS  Google Scholar 

  • Ohtomo R, Kobayashi K, Muraoka S, Ohkuma M, Ohta A, Takagi M (1996) Peroxisome proliferators activate cytochrome P450 genes in an alkane-assimilating yeast, Candida maltosa. Biochem Biophys Res Commun 222:790–793

    Article  PubMed  CAS  Google Scholar 

  • Okui S, Uchiyama M, Mizugaki M (1963a) Metabolism of hydroxy fatty acids: 1. Metabolic conversion of ricinoleic acid by a certain microorganism to 8-D-(+)-hydroxy tetradec-cis-5-enoic acid. J Biochem 53:265–270

    PubMed  CAS  Google Scholar 

  • Okui S, Uchiyama M, Mizugaki M (1963b) Metabolism of hydroxy fatty acids: 2. Intermediates of the oxidative breakdown of ricinoleic acid by Genus Candida. J Biochem 54:536–540

    PubMed  CAS  Google Scholar 

  • Okui S, Uchiyama M, Mizugaki M, Sugawara A (1963c) Characterization of hydroxy acids in depot fat after feeding of ricinoleic acid. Biochim Biophys Acta 70:344–346

    Article  Google Scholar 

  • Pagot Y, Le Clainche A, Nicaud J-M, Waché Y, Belin J-M (1998) Peroxisomal Beta-oxidation activities and gamma-decalactone production by the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 49:295–300

    Article  PubMed  CAS  Google Scholar 

  • Picataggio S, Rohrer T, Eirich LD (1991) Method for increasing the omega-hydroxylase activity in Candida tropicalis. Patent WO9114781

    Google Scholar 

  • Picataggio S et al (1992) Metabolic engineering of Candida tropicalis for the production of long chain dicarboxylic acids. Biotechnology 10:894–898

    Article  PubMed  CAS  Google Scholar 

  • Picataggio S, Deanda K, Dudley E (1993) Site-specific modification of the candida tropicals genome. Patent US5254466 (A)

    Google Scholar 

  • Romero-Guido C, Belo I, Ta TMN, Cao-Hoang L, Alchihab M, Gomes N, Gómez-Díaz D, Thonart P, Teixeira JA, Destain J, Waché Y (2011) Biochemistry of lactone formation in yeast and fungi and its utilization for the production of flavour and fragrance compounds. Appl Microbiol Biotechnol 89:535–547

    Article  PubMed  CAS  Google Scholar 

  • Schörken U, Kempers P (2009) Lipid biotechnology: industrially relevant production processes. Eur J Lipid Sci Technol 111:627–645

    Article  Google Scholar 

  • Schunck WH et al (1989) Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Commun 161:843–850

    Article  PubMed  CAS  Google Scholar 

  • Schunck WH et al (1991) Comparison of two cytochromes P-450 from Candida maltosa: primary structures, substrate specificities and effects of their expression in Saccharomyces cerevisiae on the proliferation of the endoplasmic reticulum. Eur J Cell Biol 55:336–345

    PubMed  CAS  Google Scholar 

  • Serrano-Carreon L, Hathout Y, Bensoussan M, Belin JM (1993) Metabolism of linoleic acid or mevalonate and 6-pentyl-alpha-pyrone biosynthesis by Trichoderma species. Appl Environ Microbiol 59:2945–2950

    PubMed  CAS  Google Scholar 

  • Souchon I, Spinnler HE, Dufossé L, Voilley A (1998) Trapping of gamma-decalactone by adsorption on hydrophobic sorbents : application to the bioconversion of methyl ricinoleate by the yeast Sporidiobolus salmonicolor. Biotechnol Tech 12:109–113

    Article  CAS  Google Scholar 

  • Sumita T, Iida T, Hirata A, Horiuchi H, Takagi M, Ohta A (2002a) Peroxisome deficiency represses the expression of n-alkane-inducible YlALK1 encoding cytochrome P450ALK1 in Yarrowia lipolytica. FEMS Microbiol Lett 214:31–38

    Article  PubMed  CAS  Google Scholar 

  • Sumita T, Iida T, Yamagami S, Horiuchi H, Takagi M, Ohta A (2002b) YlALK1 encoding the cytochrome P450ALK1 in Yarrowia lipolytica is transcriptionally induced by n-alkane through two distinct cis-elements on its promoter. Biochem Biophys Res Commun 294:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Ta TMN et al (2010) New insights into the effect of medium chain length lactones on yeast membranes. Importance of the culture medium. Appl Microbiol Biotechnol 87:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Ta TMN et al (2012) A shift to 50°C provokes death in distinct ways for glucose- and oleate-grown cells of Yarrowia lipolytica. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3537-3

    PubMed  Google Scholar 

  • Taoka E, Uchida S (1983) Production of long-chain dicarboxylic acid from fat or oil. Patent JP58165795

    Google Scholar 

  • Waché Y et al (2000) Involvement of acyl-CoA oxidase isozymes in biotransformation of methyl ricinoleate into γ-decalactone by Yarrowia lipolytica. Appl Environ Microbiol 66:1233–1236

    Article  PubMed  Google Scholar 

  • Waché Y, Aguedo M, Choquet A, Gatfield I, Nicaud J-M, Belin J-M (2001) Role of β-oxidation enzymes in the production of γ-decalactones from methyl ricinoleate. Appl Environ Microbiol 67:5700–5704

    Article  PubMed  Google Scholar 

  • Waché Y, Aguedo M, LeDall M-T, Nicaud J-M, Belin J-M (2002) Optimization of Yarrowia lipolytica’s β-oxidation pathway for lactones production. J Mol Catal B Enzym 19–20:347–351

    Article  Google Scholar 

  • Waché Y, Aguedo M, Nicaud J-M, Belin J-M (2003) Catabolism of hydroxyacids and production of lactones by the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 61:393–404

    PubMed  Google Scholar 

  • Waché Y, Husson F, Feron G, Belin J-M (2006) Yeast as an efficient catalyst for the production of flavour and fragrances from lipids. Antonie Van Leeuwenhoek 89:405–416

    Article  PubMed  Google Scholar 

  • Wang H et al (1999a) Evaluation of acyl CoA oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica. J Bacteriol 181:5140–5148

    PubMed  CAS  Google Scholar 

  • Wang H, Le Dall M-T, Waché Y, Laroche C, Belin J-M, Nicaud J-M (1999b) Cloning, sequencing and characterization of five genes coding for Acyl-CoA oxidase isozymes in the yeast Yarrowia lipolytica. Cell Biochem Biophys 31:165–174

    Article  PubMed  CAS  Google Scholar 

  • Weber FJ, De Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  PubMed  CAS  Google Scholar 

  • Wiedmann B, Wiedmann M, Mauersberger S, Schunck WH, Muller HG (1988) Oxygen limitation induces indirectly the synthesis of cytochrome P-450 mRNA in alkane-growing Candida maltosa. Biochem Biophys Res Commun 150:859–865

    Article  PubMed  CAS  Google Scholar 

  • Wisniewska A, Widomska J, Subczynski WK (2006) Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids. Acta Biochim Pol 53:475–484

    PubMed  CAS  Google Scholar 

  • Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327

    Article  PubMed  CAS  Google Scholar 

  • Yamagami S, Morioka D, Fukuda R, Ohta A (2004) A basic helix-loop-helix transcription factor essential for cytochrome p450 induction in response to alkanes in yeast Yarrowia lipolytica. J Biol Chem 279:22183–22189

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wilson RC, Craft DL, Eirich DL, Frayer RW (2004) Use of POX4 promoter to increase gene expression in Candida tropicalis. Patent WO2004013336

    Google Scholar 

  • Zimmer T, Kaminski K, Schunck W-H, Kaergel E, Scheller U, S M (1996a) Process for hydroxylating long-chain alkanes, fatty acids and other alkyl compounds. Patent WO9627678

    Google Scholar 

  • Zimmer T, Ohkuma M, Ohta A, Takagi M, Schunck WH (1996b) The CYP52 multigene family of Candida maltosa encodes functionally diverse n-alkane-inducible cytochromes P450. Biochem Biophys Res Commun 224:784–789

    Article  PubMed  CAS  Google Scholar 

  • Zimmer T, Ogura A, Takewaka T, Zimmer RM, Ohta A, Takagi M (2000) Gene regulation in response to overexpression of cytochrome P450 and proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 64:1930–1936

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Waché .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waché, Y. (2013). Production of Dicarboxylic Acids and Flagrances by Yarrowia lipolytica . In: Barth, G. (eds) Yarrowia lipolytica. Microbiology Monographs, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38583-4_6

Download citation

Publish with us

Policies and ethics