TFF1: The TPTP Typed First-Order Form with Rank-1 Polymorphism

  • Jasmin Christian Blanchette
  • Andrei Paskevich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7898)

Abstract

The TPTP World is a well-established infrastructure for automatic theorem provers. It defines several concrete syntaxes, notably an untyped first-order form (FOF) and a typed first-order form (TFF0), that have become de facto standards. This paper introduces the TFF1 format, an extension of TFF0 with rank-1 polymorphism. The format is designed to be easy to process by existing reasoning tools that support ML-style polymorphism. It opens the door to useful middleware, such as monomorphizers and other translation tools that encode polymorphism in FOF or TFF0. Ultimately, the hope is that TFF1 will be implemented in popular automatic theorem provers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard—Version 2.0. In: Gupta, A., Kroening, D. (eds.) SMT 2010 (2010)Google Scholar
  2. 2.
    Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 – the core of the TPTP language for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism in SMT solvers. In: Barrett, C., de Moura, L. (eds.) SMT 2008, pp. 1–5. ICPS, ACM (2008)Google Scholar
  5. 5.
    Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 87–102. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers. In: Leino, K.R.M., Moskal, M. (eds.) Boogie 2011, pp. 53–64 (2011)Google Scholar
  7. 7.
    Couchot, J.F., Lescuyer, S.: Handling polymorphism in automated deduction. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 263–278. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck (submitted)Google Scholar
  9. 9.
    Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Kuncak, V.: Intermediate languages—From birth to execution. In: Boogie 2011 (2011)Google Scholar
  11. 11.
    Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S. (eds.) IWIL 2010 (2010)Google Scholar
  13. 13.
    Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR 2006. CEUR Workshop Proceedings, vol. 192, pp. 18–33. CEUR-WS.org (2006)Google Scholar
  14. 14.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure—The FOF and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Sutcliffe, G.: The TPTP world – infrastructure for automated reasoning. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formal. Reasoning 3(1), 1–27 (2010)MATHGoogle Scholar
  17. 17.
    Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Voronkov, A.: Automated reasoning: Past story and new trends. In: Gottlob, G., Walsh, T. (eds.) IJCAI 2003, pp. 1607–1612. Morgan Kaufmann (2003)Google Scholar
  19. 19.
    Wand, D., Weidenbach, C.: Private communication (June 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jasmin Christian Blanchette
    • 1
  • Andrei Paskevich
    • 2
    • 3
  1. 1.Fakultät für InformatikTechnische Universität MünchenGermany
  2. 2.LRIUniversité Paris-Sud, CNRSFrance
  3. 3.INRIA Saclay – Île-de-FranceFrance

Personalised recommendations