Skip to main content

Dynamic Logic with Trace Semantics

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7898)

Abstract

Dynamic logic is an established instrument for program verification and for reasoning about the semantics of programs and programming languages. In this paper, we define an extension of dynamic logic, called Dynamic Trace Logic (DTL), which combines the expressiveness of program logics such as dynamic logic with that of temporal logic. And we present a sound and relatively complete sequent calculus for proving validity of DTL formulae.

Due to its expressiveness, DTL can serve as a basis for proving functional and information-flow properties in concurrent programs, among other applications.

Keywords

  • Temporal Logic
  • Trace Formula
  • Linear Temporal Logic
  • Logical Variable
  • Variable Assignment

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38574-2_22
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-38574-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Manna, Z.: Nonclausal deduction in first-order temporal logic. Journal of the ACM 37(2), 279–317 (1990)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Log. Comput. 20(3), 651–674 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Beckert, B.: A dynamic logic for Java Card. In: Proceedings, 2nd ECOOP Workshop on Formal Techniques for Java Programs, Cannes, France, pp. 111–119 (2000)

    Google Scholar 

  4. Beckert, B., Bruns, D.: Dynamic trace logic: Definition and proofs. Tech. Rep. 2012-10, Karlsruhe Institute of Technology, Department of Computer Science (2012), revised version available at http://formal.iti.kit.edu/~bruns/papers/trace-tr.pdf

  5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

    Google Scholar 

  6. Beckert, B., Schlager, S.: A sequent calculus for first-order dynamic logic with trace modalities. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 626–641. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer Academic Publishers, Dordrecht (1999)

    CrossRef  Google Scholar 

  8. Harel, D.: Dynamic logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic, Volume II: Extensions of Classical Logic, pp. 497–604. D. Reidel Publishing Co., Dordrecht (1984)

    CrossRef  Google Scholar 

  9. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. IEEE Computer 18(2) (February 1985)

    Google Scholar 

  10. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 457–471. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  11. Reynolds, M., Dixon, C.: Theorem-proving for discrete temporal logic. In: Fisher, D.M., Gabbay, Vila, L. (eds.) Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier Science (2005)

    Google Scholar 

  12. Scheben, C., Schmitt, P.H.: Verification of information flow properties of java programs without approximations. In: Beckert, B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 232–249. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  13. Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-guarantee reasoning with ITL. In: Combi, C., Leucker, M., Wolter, F. (eds.) Eighteenth International Symposium on Temporal Representation and Reasoning, TIME 2011, pp. 99–106. IEEE (2011)

    Google Scholar 

  14. Thums, A., Schellhorn, G., Ortmeier, F., Reif, W.: Interactive verification of statecharts. In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 355–373. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  15. Wolper, P.: The tableau method for temporal logic: An overview. Logique et Analyse 28(110-111), 119–136 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beckert, B., Bruns, D. (2013). Dynamic Logic with Trace Semantics. In: Bonacina, M.P. (eds) Automated Deduction – CADE-24. CADE 2013. Lecture Notes in Computer Science(), vol 7898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38574-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38574-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38573-5

  • Online ISBN: 978-3-642-38574-2

  • eBook Packages: Computer ScienceComputer Science (R0)