Skip to main content

PRocH: Proof Reconstruction for HOL Light

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7898)

Abstract

PRocH is a proof reconstruction tool that imports in HOL Light proofs produced by ATPs on the recently developed translation of HOL Light and Flyspeck problems to ATP formats. PRocH combines several reconstruction methods in parallel, but the core improvement over previous methods is obtained by re-playing in the HOL logic the detailed inference steps recorded in the ATP (TPTP) proofs, using several internal HOL Light inference methods. These methods range from fast variable matching and more involved rewriting, to full first-order theorem proving using the MESON tactic. The system is described and its performance is evaluated here on a large set of Flyspeck problems.

Keywords

  • Theorem Prove
  • Automate Reasoning
  • Proof Obligation
  • Type Annotation
  • Proof Step

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38574-2_18
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-38574-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böhme, S., Nipkow, T.: Sledgehammer: Judgement day. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  2. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. CoRR, abs/1211.7012 (2012)

    Google Scholar 

  3. McCune, W., Matlin, O.S.: Ivy: A Preprocessor and Proof Checker for First-Order Logic. In: Computer-Aided Reasoning: ACL2 Case Studies. Advances in Formal Methods, vol. 4, pp. 265–282. Kluwer (2000)

    Google Scholar 

  4. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 232–245. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  5. Pak, K.: Methods of lemma extraction in natural deduction proofs. Journal of Automated Reasoning 50, 217–228 (2013)

    MATH  CrossRef  Google Scholar 

  6. Sutcliffe, G.: Semantic derivation verification: Techniques and implementation. International Journal on Artificial Intelligence Tools 15(6), 1053–1070 (2006)

    CrossRef  Google Scholar 

  7. Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for writing derivations and finite interpretations. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  8. Urban, J.: BliStr: The Blind Strategymaker. CoRR, abs/1301.2683 (2013)

    Google Scholar 

  9. Vyskočil, J., Stanovský, D., Urban, J.: Automated Proof Compression by Invention of New Definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 447–462. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  10. Wiedijk, F.: A synthesis of the procedural and declarative styles of interactive theorem proving. Logical Methods in Computer Science 8(1) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaliszyk, C., Urban, J. (2013). PRocH: Proof Reconstruction for HOL Light . In: Bonacina, M.P. (eds) Automated Deduction – CADE-24. CADE 2013. Lecture Notes in Computer Science(), vol 7898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38574-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38574-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38573-5

  • Online ISBN: 978-3-642-38574-2

  • eBook Packages: Computer ScienceComputer Science (R0)