Skip to main content

Hierarchical Combination

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7898)

Abstract

A novel approach is described for the combination of unification algorithms for two equational theories E 1 and E 2 which share function symbols. We are able to identify a set of restrictions and a combination method such that if the restrictions are satisfied the method produces a unification algorithm for the union of non-disjoint equational theories. Furthermore, we identify a class of theories satisfying the restrictions. The critical characteristics of the class is the hierarchical organization and the shared symbols being restricted to “inner constructors”.

Keywords

  • Combination Method
  • Equational Theory
  • Symbolic Computation
  • Commutative Theory
  • Cipher Block Chain

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38574-2_17
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-38574-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anantharaman, S., Bouchard, C., Narendran, P., Rusinowitch, M.: Unification modulo chaining. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 70–82. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  2. Anantharaman, S., Erbatur, S., Lynch, C., Narendran, P., Rusinowitch, M.: Unification modulo synchronous distributivity. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 14–29. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  3. Baader, F., Ghilardi, S., Tinelli, C.: A new combination procedure for the word problem that generalizes fusion decidability results in modal logics. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 183–197. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  4. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, New York (1998)

    Google Scholar 

  5. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories: Combining decision procedures. Journal of Symbolic Computation 21(2), 211–243 (1996)

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 445–532. Elsevier and MIT Press (2001)

    Google Scholar 

  7. Baader, F., Tinelli, C.: Combining equational theories sharing non-collapse-free constructors. In: Kirchner, H. (ed.) FroCos 2000. LNCS (LNAI), vol. 1794, pp. 260–274. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  8. Baader, F., Tinelli, C.: Combining decision procedures for positive theories sharing constructors. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 352–366. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  9. Boudet, A.: Combining unification algorithms. Journal of Symbolic Computation 16(6), 597–626 (1993)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Bürckert, H.-J., Herold, A., Schmidt-Schauß, M.: On equational theories, unification, and (un)decidability. Journal of Symbolic Computation 8(1-2), 3–49 (1989)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Domenjoud, E., Klay, F., Ringeissen, C.: Combination techniques for non-disjoint equational theories. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 267–281. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

  12. Dougherty, D.J., Johann, P.: An improved general E-unification method. Journal of Symbolic Computation 14(4), 303–320 (1992)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Erbatur, S., Marshall, A.M., Kapur, D., Narendran, P.: Unification over distributive exponentiation (sub)theories. Journal of Automata, Languages and Combinatorics (JALC) 16(2-4), 109–140 (2011)

    Google Scholar 

  14. Gallier, J.H., Snyder, W.: Complete sets of transformations for general E-unification. Theoretical Computer Science 67(2-3), 203–260 (1989)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Huet, G.P.: Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of the ACM (JACM) 27(4), 797–821 (1980)

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Jouannaud, J.-P., Kirchner, C.: Solving equations in abstract algebras: A rule-based survey of unification. In: Computational Logic - Essays in Honor of Alan Robinson, pp. 257–321 (1991)

    Google Scholar 

  17. Morawska, B.: General E-unification with eager variable elimination and a nice cycle rule. Journal of Automated Reasoning 39, 77–106 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Ringeissen, C.: Unification in a combination of equational theories with shared constants and its application to primal algebras. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 261–272. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

  19. Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational theories. Journal of Symbolic Computation 8, 51–99 (1989)

    MathSciNet  MATH  CrossRef  Google Scholar 

  20. Snyder, W.: A Proof Theory for General Unification, Birkhauser. Progress in Computer Science and Applied Logic, vol. 11 (1991)

    Google Scholar 

  21. Tidén, E.: Unification in combinations of collapse-free theories with disjoint sets of function symbols. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 431–449. Springer, Heidelberg (1986)

    CrossRef  Google Scholar 

  22. Yelick, K.A.: Unification in combinations of collapse-free regular theories. Journal of Symbolic Computation 3(1-2), 153–181 (1987)

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erbatur, S., Kapur, D., Marshall, A.M., Narendran, P., Ringeissen, C. (2013). Hierarchical Combination. In: Bonacina, M.P. (eds) Automated Deduction – CADE-24. CADE 2013. Lecture Notes in Computer Science(), vol 7898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38574-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38574-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38573-5

  • Online ISBN: 978-3-642-38574-2

  • eBook Packages: Computer ScienceComputer Science (R0)