Advertisement

Foundational Proof Certificates in First-Order Logic

  • Zakaria Chihani
  • Dale Miller
  • Fabien Renaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7898)

Abstract

It is the exception that provers share and trust each others proofs. One reason for this is that different provers structure their proof evidence in remarkably different ways, including, for example, proof scripts, resolution refutations, tableaux, Herbrand expansions, natural deductions, etc. In this paper, we propose an approach to foundational proof certificates as a means of flexibly presenting proof evidence so that a relatively simple and universal proof checker can check that a certificate does, indeed, elaborate to a formal proof. While we shall limit ourselves to first-order logic in this paper, we shall not limit ourselves in many other ways. Our framework for defining and checking proof certificates will work with classical and intuitionistic logics and with proof structures as diverse as resolution refutations, matings, and natural deduction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and Computation 2(3), 297–347 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Andrews, P.B.: Theorem-proving via general matings. J. ACM 28, 193–214 (1981)zbMATHCrossRefGoogle Scholar
  3. 3.
    Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. on Computational Logic 13(1) (April 2012)Google Scholar
  5. 5.
    Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as a universal proof language. Proof Exchange for Theorem Proving, 28–43 (2012)Google Scholar
  6. 6.
    Böhme, S., Weber, T.: Designing proof formats: A user’s perspective. Proof eXchange for Theorem Proving, 27–32 (August 2011)Google Scholar
  7. 7.
    Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-pi-calculus modulo. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 102–117. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    de Bruijn, N.G.: Reflections on Automath. In: Nederpelt, R.P., Geuvers, J.H., de Vrijer, R.C. (eds.) Selected Papers on Automath. Studies in Logic and the Foundations of Mathematics, vol. 133, pp. 201–228. North-Holland (1994)Google Scholar
  9. 9.
    Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + automation + soundness: Towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 167–181. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland (1969)Google Scholar
  11. 11.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Language Design and Programming Methodology. LNCS, vol. 78. Springer (1979)Google Scholar
  13. 13.
    Honsell, F., Lenisa, M., Liquori, L., Maksimovic, P., Scagnetto, I.: LF\(_{\cal P}\): a logical framework with external predicates. In: LFMTP 2012: Proceedings of the Seventh International Workshop on Logical Frameworks and Meta-Languages, Theory and Practice, pp. 13–22. ACM, New York (2012)CrossRefGoogle Scholar
  14. 14.
    Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical Computer Science 410(46), 4747–4768 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Liang, C., Miller, D.: A focused approach to combining logics. Annals of Pure and Applied Logic 162(9), 679–697 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Miller, D.: A proposal for broad spectrum proof certificates. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 54–69. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge University Press (June 2012)Google Scholar
  19. 19.
    Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic 51, 125–157 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Stump, A.: Proof checking technology for satisfiability modulo theories. In: Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zakaria Chihani
    • 1
  • Dale Miller
    • 1
  • Fabien Renaud
    • 1
  1. 1.INRIA and LIX, Ecole PolytechniquePalaiseauFrance

Personalised recommendations