Advertisement

Ultrasound-Based Image Guidance for Robot-Assisted Laparoscopic Radical Prostatectomy: Initial in-vivo Results

  • Omid Mohareri
  • Caitlin Schneider
  • Troy K. Adebar
  • Mike C. Yip
  • Peter Black
  • Christopher Y. Nguan
  • Dale Bergman
  • Jonathan Seroger
  • Simon DiMaio
  • Septimiu E. Salcudean
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7915)

Abstract

This paper describes the initial clinical evaluation of a real-time ultrasound-based guidance system for robot-assisted laparoscopic radical prostatectomy (RALRP). The surgical procedure was performed on a live anaesthetized canine with a da Vinci SI robot. Intraoperative imaging was performed using a robotic transrectal ultrasound (TRUS) manipulator and a bi-plane TRUS transducer. Two registration methods were implemented and tested: (i)using specialized fiducials placed at the air-tissue boundary, 3D TRUS data were registered to the da Vinci stereo endoscope with an average TRE of 2.37 ± 1.06 mm, (ii)using localizations of the da Vinci manipulator tips in 3D TRUS images, 3D TRUS data were registered to the kinematic frame of the da Vinci manipulators with average TRE of 1.88 ± 0.88 mm using manual tool tip localization, and average TRE of 2.68 ± 0.98 mm using an automatic tool tip localization algorithm. Registration time was consistently less than 2 minutes when performed by two experienced surgeons after limited learning. The location of the TRUS probe was remotely controlled through part of the procedure by a da Vinci tool, with the corresponding ultrasound images being displayed on the surgeon console using TilePro. Automatic tool tracking was achieved with angular accuracy of 1.65 ± 1.24 deg. This work demonstrates, for the first time, the in-vivo use of a robotically controlled TRUS probe calibrated to the da Vinci robot, and will allow the da Vinci tools to be tracked for safety and to be used as pointers for regions of interest to be imaged by ultrasound.

Keywords

Image guided surgery Robot-assisted prostate surgery da Vinci surgical robot 3D ultrasound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tracking the rise of robotic surgery for prostate cancer. NCI Cancer Bulletin 8(16) (2011)Google Scholar
  2. 2.
    Adebar, T., Salcudean, S., Mahdavi, S., Moradi, M., Nguan, C., Goldenberg, L.: A robotic system for intra-operative trans-rectal ultrasound and ultrasound elastography in radical prostatectomy. In: Taylor, R.H., Yang, G.-Z. (eds.) IPCAI 2011. LNCS, vol. 6689, pp. 79–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Adebar, T., Yip, M., Salcudean, S., Rohling, R., Nguan, C., Goldenberg, L.: Registration of 3d ultrasound to laparoscopic stereo cameras through an air-tissue boundary. IEEE Transactions on Medical Imaging 31(11), 2133–2142 (2012)CrossRefGoogle Scholar
  4. 4.
    Bouguet, J.Y.: Camera calibration toolbox. Available online (2010)Google Scholar
  5. 5.
    Price, D.T., Chari, R.S., Neighbors, J.D., et al.: Laparoscopic radical prostatectomy in canine model. Journal of Laparoscopic Surgery 6(6), 405–412 (1996)CrossRefGoogle Scholar
  6. 6.
    DiMaio, S., Hasser, C.: The da vinci reseach interface, pp. 626–634 (2008)Google Scholar
  7. 7.
    Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.N.: Bone surface localization in ultrasound using image phase-based features. Ultrasound in Medicine & Biology 35(9), 1475–1487 (2009)CrossRefGoogle Scholar
  8. 8.
    Han, M., Stoianovici, D., Kim, C., Mozer, P., Schfer, F., Badaan, S., Vigaru, B., Tseng, K., Petrisor, D., Trock, B.: Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Journal of Urology 77(2), 502–506 (2011)CrossRefGoogle Scholar
  9. 9.
    Hung, A., Abreu, A., Shoji, S., Goh, A., Berger, A., Desai, M., Aron, M., Gill, I., Ukimura, O.: Robotic transrectal ultrasonography during robot-assisted radical prostatectomy. European Urology 62(2), 341–348 (2012)CrossRefGoogle Scholar
  10. 10.
    Long, J.A., Haber, G.P., Lee, B.H., Guillotreau, J., Autorino, R., Laydner, H., Yakoubi, R., Rizkala, E., Stein, R.J., Kaouk, J.H.: Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy: initial clinical experience. Journal of Urology 80(3), 608–613 (2012)CrossRefGoogle Scholar
  11. 11.
    Mohareri, O., Ramezani, M., Adebar, T., Abolmaesumi, P., Salcudean, S.: Automatic detection and localization of da vinci tool tips in 3D ultrasound. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds.) IPCAI 2012. LNCS, vol. 7330, pp. 22–32. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Tavakoli, M., Howe, R.D.: Haptic effects of surgical teleoperator flexibility. International Journal of Robotics Research 28(10), 1289–1302 (2009)CrossRefGoogle Scholar
  13. 13.
    Ukimura, O., Kaouk, J., Kawauchi, A., Miki, T., Gill, I., Desai, M., Steinberg, A., Kilciler, M., Ng, C., Abreu, S., Spaliviero, M., Ramani, A.: Real-time transrectal ultrasonography during laparoscopic radical prostatectomy. Journal of Urology 172(1), 112–118 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Omid Mohareri
    • 1
  • Caitlin Schneider
    • 1
  • Troy K. Adebar
    • 2
  • Mike C. Yip
    • 3
  • Peter Black
    • 4
  • Christopher Y. Nguan
    • 4
  • Dale Bergman
    • 5
  • Jonathan Seroger
    • 5
  • Simon DiMaio
    • 5
  • Septimiu E. Salcudean
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Mechanical EngineeringStanford UniversityUnited States
  3. 3.Department of BioengineeringStanford UniversityUnited States
  4. 4.Department of Urologic Sciences, Faculty of MedicineUniversity of British ColumbiaVancouverCanada
  5. 5.Intuitive Surgical Inc.SunnyvaleUnited States

Personalised recommendations