Survey of Recent Developments in Quality Assessment for Target Recognition Video

  • Mikołaj Leszczuk
  • Joel Dumke
Part of the Communications in Computer and Information Science book series (CCIS, volume 368)

Abstract

Users of video to perform tasks require sufficient video quality to recognize the information needed for their application. Therefore, the fundamental measure of video quality in these applications is the success rate of these recognition tasks, which is referred to as visual intelligibility or acuity. One of the major causes of reduction of visual intelligibility is loss of data through various forms of compression. Additionally, the characteristics of the scene being captured have a direct effect on visual intelligibility and on the performance of a compression operation-specifically, the size of the target of interest, the lighting conditions, and the temporal complexity of the scene. This paper presents a survey of recent developments in quality assessment for target recognition video, which is including performed series of tests to study the effects and interactions of compression and scene characteristics. An additional goal was to test existing and develop new objective measurements.

Keywords

compression MOS (Mean Opinion Score) quality assessment target recognition video 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CENELEC EN 50132, Alarm systems. CCTV surveillance systems for use in security applications, European Committee for Electro-technical Standardization European Norm (2011) Google Scholar
  2. 2.
    Picard, D., Dacremont, C., Valentin, D., Giboreau, A.: Perceptual dimensions of tactile textures. Acta Psychologica 114(2), 165–184 (2003), http://www.sciencedirect.com/science/article/pii/S0001691803000751 CrossRefGoogle Scholar
  3. 3.
    Strohmeier, D., Jumisko-Pyykko, S., Kunze, K.: Open profiling of quality: a mixed method approach to understanding multimodal quality perception. Adv. Multimedia 2010, 3:1–3:17 (January 2010), http://dx.doi.org/10.1155/2010/658980
  4. 4.
    Ghinea, G., Thomas, J.P.: QoS impact on user perception and understanding of multimedia video clips. In: Proceedings of the Sixth ACM International Conference on Multimedia, ser. MULTIMEDIA 1998, pp. 49–54. ACM, New York (1998), http://doi.acm.org/10.1145/290747.290754 CrossRefGoogle Scholar
  5. 5.
    Ghinea, G., Chen, S.Y.: Measuring quality of perception in distributed multimedia: Verbalizers vs. imagers. Computers in Human Behavior 24(4), 1317–1329 (2008)CrossRefGoogle Scholar
  6. 6.
    Nyman, G., Radun, J., Leisti, T., Oja, J., Ojanen, H., Olives, J.L., Vuori, T., Hakkinen, J.: What do users really perceive — probing the subjective image quality experience. In: Proceedings of the SPIE International Symposium on Electronic Imaging 2006: Imaging Quality and System Performance III, vol. 6059, pp. 1–7 (2006)Google Scholar
  7. 7.
    Szwoch, G., Dalka, P.: Identification of regions of interest in video for a traffic monitoring system. In: Proc. 1st Intern. Conf. on Information Technology, pp. 337–340 (May 2008)Google Scholar
  8. 8.
    Szwoch, G., Dalka, P., Czyżewski, A.: Objects classification based on their physical sizes for detection of events in camera images. In: 2008 Signal Processing Algorithms, Architectures, Arrangements, and Applications (SPA), pp. 15–20 (September 2008)Google Scholar
  9. 9.
    ITU-R BT.500-12, Methodology for the subjective assessment of the quality of television pictures, International Telecommunication Union Recommendation, Rev. 12 (2009), http://www.itu.int/rec/R-REC-BT.500-12-200909-I
  10. 10.
    ITU-T P.800, Methods for subjective determination of transmission quality, International Telecommunication Union Recommendation (1996), http://www.itu.int/rec/T-REC-P.800-199608-I
  11. 11.
    ITU-T P.910, Subjective video quality assessment methods for multimedia applications, International Telecommunication Union Recommendation (1999), http://www.itu.int/rec/T-REC-P.910-200804-I
  12. 12.
    ITU-T P.912, Subjective video quality assessment methods for recognition tasks, International Telecommunication Union Recommendation (2008), http://www.itu.int/rec/T-REC-P.912-200808-I
  13. 13.
    Radun, J., Leisti, T., Hakkinen, J., Ojanen, H., Olives, J.L., Vuori, T., Nyman, G.: Content and quality: Interpretation-based estimation of image quality. ACM Transactions on Applied Perception 4(4), 2:1–2:15 (2008), http://doi.acm.org/10.1145/1278760.1278762
  14. 14.
    Janowski, L., Romaniak, P.: QoE as a function of frame rate and resolution changes. In: Zeadally, S., Cerqueira, E., Curado, M., Leszczuk, M. (eds.) FMN 2010. LNCS, vol. 6157, pp. 34–45. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-13789-1_4 CrossRefGoogle Scholar
  15. 15.
    Duplaga, M., Leszczuk, M., Papir, Z., Przelaskowski, A.: Evaluation of quality retaining diagnostic credibility for surgery video recordings. In: Sebillo, M., Vitiello, G., Schaefer, G. (eds.) VISUAL 2008. LNCS, vol. 5188, pp. 227–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Leszczuk, M.I., Koń, A., Dumke, J., Janowski, L.: Redefining ITU-T P.912 recommendation requirements for subjects of quality assessments in recognition tasks. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2012. CCIS, vol. 287, pp. 188–199. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Leszczuk, M., Dumke, J.: The Quality Assessment for Recognition Tasks (QART), VQEG (July 2012), http://www.its.bldrdoc.gov/vqeg/project-pages/qart/qart.aspx
  18. 18.
    Leszczuk, M.: Assessing task-based video quality — A journey from subjective psycho-physical experiments to objective quality models. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 91–99. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Leszczuk, M.: Optimizing task-based video quality; A journey from subjective psychophysical experiments to objective quality optimization. Springer Multimedia Tools and Applications (2012), doi:10.1007/s11042-012-1161-6Google Scholar
  20. 20.
    Leszczuk, M., Stange, I., Ford, C.: Determining image quality requirements for recognition tasks in generalized public safety video applications: Definitions, testing, standardization, and current trends. In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–5 (2011)Google Scholar
  21. 21.
    Leszczuk, M., Janowski, L., Romaniak, P., Głowacz, A., Mirek, R.: Quality assessment for a licence plate recognition task based on a video streamed in limited networking conditions. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 10–18. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Witkowski, M., Leszczuk, M.I.: Classification of Video Sequences into Specified Generalized Use Classes of Target Size and Lighting Level. In: The IEEE Symposium on Broadband Multimedia Systems and Broadcasting, June 27-29. Yonsei University, Seoul (2012)Google Scholar
  23. 23.
    Faye, P., Bremaud, D., Daubin, M.D., Courcoux, P., Giboreau, A., Nicod, H.: Perceptive free sorting and verbalization tasks with naive subjects: an alternative to descriptive mappings. Food Quality and Preference 15(7-8), 781–791 (2004) Fifth Rose Marie Pangborn Sensory Science Symposium, http://www.sciencedirect.com/science/article/pii/S0950329304000540 CrossRefGoogle Scholar
  24. 24.
    Szczuko, P., Romaniak, P., Leszczuk, M., Mirek, R., Pleva, M., Ondas, S., Szwoch, G., Korus, P., Kollmitzer, C., Dalka, P., Kotus, J., Ciarkowski, A., Dąbrowski, A., Pawłowski, P., Marciniak, T., Weychan, R., Misiorek, F.: D1.2, report on NS and CS hardware construction. The INDECT Consortium: Intelligent Information System Supporting Observation, Searching and Detection for Security of Citizens in Urban Environment, European Seventh Framework Program FP7-218086-collaborative project, Europa, Tech. Rep, cop (2010)Google Scholar
  25. 25.
    Spangler, T.: Golden eyes. Multichannel News (October 2009)Google Scholar
  26. 26.
    The Video Quality Experts Group, VQEG (July 2012), http://www.vqeg.org/
  27. 27.
    VQiPS, Recorded-video quality tests for object recognition tasks, U.S. Department of Homeland Security’s Office for Interoperability and Compatibility (June 2011), http://www.pscr.gov/outreach/safecom/vqips_reports/RecVidObjRecogn.pdf
  28. 28.
    VQiPS, Video quality tests for object recognition applications,” U.S. Department of Homeland Security’s Office for Interoperability and Compatibility (June 2010), http://www.safecomprogram.gov/library/Lists/Library/Attachments/231/Video_Quality_Tests_for_Object_Recognition_Applications.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mikołaj Leszczuk
    • 1
  • Joel Dumke
    • 2
  1. 1.AGH University of Science and TechnologyKrakowPoland
  2. 2.Institute for Telecommunication SciencesBoulderUSA

Personalised recommendations