Video Analytics-Based Algorithm for Monitoring Egress from Buildings

  • Maciej Szczodrak
  • Andrzej Czyżewski
Part of the Communications in Computer and Information Science book series (CCIS, volume 368)

Abstract

A concept and practical implementation of the algorithm for detecting of potentially dangerous situations of crowding in passages is presented. An example of such situation is a crush which may be caused by obstructed pedestrian pathway. Surveillance video camera signal analysis performed on line is employed in order to detect hold-ups near bottlenecks like doorways or staircases. The details of implemented algorithm which uses optical flow method combined with fuzzy logic are explained. The implementation details are introduced with focus on the computing platform and parallel processing. The experiments were carried out on the set of gathered video recordings from the surveillance camera installed in the campus of Gdansk University of Technology. The results of experiments performed on gathered video recordings show that efficiency of the algorithm is high.

Keywords

Crowd Crowd behavior Egress monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor, P.: The Hillsborough Stadium disaster, inquiry by the Rt Hon Lord Justice Taylor : interim report. Her Majesty’s Stationery Office (April 15, 1989)Google Scholar
  2. 2.
    Grosshandler, W.L., Bryner, N., Madrzykowski, D., Kuntz, K.: Report of the technical investigation of the station nightclub fire. In: NIST NCSTAR 2. National Institute of Standards and Technology, Gaithersburg (2005)Google Scholar
  3. 3.
    Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: An empirical study. Phys. Rev. E 75, 046109 (2007)Google Scholar
  4. 4.
    Kotus, J., Lopatka, K., Czyzewski, A.: Detection and localization of selected acoustic events in acoustic field for smart surveillance applications. Multimedia Tools and Applications, 1–17 (2012)Google Scholar
  5. 5.
    Hammami, M., Jarraya, S., Ben-Abdallah, H.: On line background modeling for moving object segmentation in dynamic scenes. Multimedia Tools and Applications, 1–28 (2011)Google Scholar
  6. 6.
    Krausz, B., Herpers, R.: Metrosurv: detecting events in subway stations. Multimedia Tools and Applications 50, 123–147 (2010)CrossRefGoogle Scholar
  7. 7.
    Saxena, S., Brémond, F., Thonnat, M., Ma, R.: Crowd behavior recognition for video surveillance. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 970–981. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 935–942 (June 2009)Google Scholar
  9. 9.
    Yin, J., Velastin, S., Davies, A.: Image processing techniques for crowd density estimation using a reference image. In: Li, S., Teoh, E.-K., Mital, D., Wang, H. (eds.) ACCV 1995. LNCS, vol. 1035, pp. 489–498. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Marana, A., Velastin, S., Costa, L., Lotufo, R.: Automatic estimation of crowd density using texture. Safety Science 28(3), 165–175 (1998)CrossRefGoogle Scholar
  11. 11.
    Lo, B., Velastin, S.: Automatic congestion detection system for underground platforms. In: Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 158–161 (2001)Google Scholar
  12. 12.
    Krawczyk, H., Proficz, J.: Kaskada - multimedia processing platform architecture. In: SIGMAP, pp. 26–31 (2010)Google Scholar
  13. 13.
    Bruhn, A., Weickert, J., Schnörr, C.: Combining the advantages of local and global optic flow methods. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 454–462. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Horn, B., Schunck, B.: Determining optical-flow. Artificial Intelligence 17(1-3), 185–203 (1981)CrossRefGoogle Scholar
  15. 15.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI 1981, pp. 674–679 (April 1981)Google Scholar
  16. 16.
    Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (October 2007)Google Scholar
  17. 17.
    Wesseling, P.: An Introduction to Multigrid Methods. John Wiley & Sons, Chichester (1992)MATHGoogle Scholar
  18. 18.
    Briggs, W., Henson, V., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM Books, Philadelphia (2000)MATHCrossRefGoogle Scholar
  19. 19.
    Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for realtime tracking with shadow detection. In: Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems, AVBS 2001, Video Based Surveillance Systems: Computer Vision and Distributed Processing. Kluwer Academic Publishers (2001)Google Scholar
  20. 20.
    Kosko, B.: Fuzzy engineering. Prentice-Hall, Inc., Upper Saddle River (1997)MATHGoogle Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37(3), 77–84 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Polus, A., Schofer, J., Ushpiz, A.: Pedestrian flow and level of service. Journal of Transportation Engineering 109(1), 46–56 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maciej Szczodrak
    • 1
  • Andrzej Czyżewski
    • 1
  1. 1.Multimedia Systems Department, Faculty of Electronics, Telecommunications and InformaticsGdansk University of TechnologyGdanskPoland

Personalised recommendations