Use of the Bio-inspired Algorithms to Find Global Minimum in Force Directed Layout Algorithms

  • Patrik Dubec
  • Jan Plucar
  • Lukáš Rapant
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 368)


We present bio-inspired approach in a process of finding global minimum of an energetic function that is used in force directed layout algorithms. We have been faced with the issue of displaying large graphs. These graphs arise in the analysis of social networks with the need to view social relationships between entities. In order to find global minimum of an energetic function we employ two bio-inspired algorithms: Differential Evolution and Self-Organizing Migration Algorithm (SOMA). Differential evolution is inspired by crossbreeding of population whereas SOMA is inspired by migration of some species. In this article we will present basics of these algorithms, their results and comparison.


Force-based layout algorithm Differential evolution Soma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  2. 2.
    Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Softw. – Pract. Exp. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  3. 3.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inform. Process. Lett. 31, 7–15 (1989)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. Computational Geometry 29(2004), 3–18 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Crawford, C.: A Multilevel Force-directed Graph Drawing Algorithm Using Multi-level Global Force Approximation. In: 2012 16th International Conference on Information Visualisation, IV (2012)Google Scholar
  6. 6.
    Finkel, B., Tamassia, R.: Curvilinear Graph Drawing Using the Force-Directed Method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-Directed Lombardi-Style Graph Drawing. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 320–331. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 167–218. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Price, K., Storn, R.: Differential Evolution – A simple evolutionary strategy for fast optimization. Dr. Dobb’s Journal 264, 18–24 and 78 (1997)Google Scholar
  10. 10.
    Price, K.: Differential evolution: a fast and simple numerical optimizer. In: Proc. 1996 Biennial Conference of the North American Fuzzy Information Processing Society, pp. 524–527. IEEE Press, New York (1996)CrossRefGoogle Scholar
  11. 11.
    Price, K.: Genetic Annealing. Dr. Dobb’s Journal, 127–132 (October 1994)Google Scholar
  12. 12.
    Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patrik Dubec
    • 1
  • Jan Plucar
    • 1
  • Lukáš Rapant
    • 1
  1. 1.VSB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations