Downloading and Analysing Images from the Internet in Order to Detect Special Objects

  • Mikołaj Leszczuk
  • Tomasz Piwowarczyk
  • Michał Grega
Part of the Communications in Computer and Information Science book series (CCIS, volume 368)

Abstract

Along with all the positives brought by the Internet, the global network is also used for criminal purposes. The goal of the presented work was to create and optimize applications working in parallel with the search and illegal content analysis system (SWAT) created previously at the authors’ university. The role of the SWAT system is to penetrate the Internet to search for images and provide links to the presented application. The presented application is able to detect various special objects, such as faces, symbols or child pornography. The use of bees algorithm-based optimization made it possible to increase the effectiveness of image analysis. With appropriate assumptions, the efficiency was increased by a factor of three times compared to the application without optimization. The efficiency of the optimization algorithm depends largely on the nature of the input data, the URL addresses.

Keywords

OpenCV optimization algorithms C\(\sharp\) Python Internet safety Web Services 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grega, M., Bryk, D., Napora, M., Gusta, M.: INACT — INDECT advanced image cataloguing tool. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 28–36. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-21512-4_4 CrossRefGoogle Scholar
  2. 2.
    Group, M.M.: Internet world stats, http://www.internetworldstats.com/
  3. 3.
    INDECT: Welcome to INDECT homepage – INDECT-home, http://www.indect-project.eu/
  4. 4.
    Opaliński, A., Turek, W.: Information retrieval and identity analysis. In: Metody Sztucznej Inteligencji w Działaniach na Rzecz Bezpieczeństwa Publicznego, pp. 173–194. AGH University of Science and Technology Press (2009) No. 978-83-7464-268-2Google Scholar
  5. 5.
    Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S.: Application of the bees algorithm to the training of radial basis function networks for control chart pattern recognition (2006)Google Scholar
  6. 6.
    Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm, a novel tool for complex optimisation problems. In: Proceedings of the 2nd International Virtual Conference on Intelligent Production Machines and Systems (IPROMS 2006), pp. 454–459. Elsevier (2006)Google Scholar
  7. 7.
    Turek, W., Opalinski, A., Kisiel-Dorohinicki, M.: Extensible web crawler – towards multimedia material analysis. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 183–190. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-21512-4_22 CrossRefGoogle Scholar
  8. 8.
    Wilaszek, K., Wójcik, T., Opaliński, A., Turek, W.: Internet identity analysis and similarities detection. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2012. CCIS, vol. 287, pp. 369–379. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-30721-8_36 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mikołaj Leszczuk
    • 1
  • Tomasz Piwowarczyk
    • 1
  • Michał Grega
    • 1
  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations