Strategies for Generating and Evaluating Large-Scale Powerlaw-Distributed P2P Overlays

  • Ana-Maria Oprescu
  • Spyros Voulgaris
  • Haralambie Leahu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7891)

Abstract

A very wide variety of physical, demographic, biological and man-made phenomena have been observed to exhibit powerlaw behavior, including the population of cities and villages, sizes of lakes, etc. The Internet is no exception to this. The connectivity of routers, the popularity of web sites, and the degrees of World Wide Web pages are only a few examples of measurements governed by powerlaw. The study of powerlaw networks has strong implications on the design and function of the Internet.

Nevertheless, it is still uncertain how to explicitly generate such topologies at a very large scale. In this paper, we investigate the generation of P2P overlays following a powerlaw degree distribution. We revisit and identify weaknesses of existing strategies. We propose a new methodology for generating powerlaw topologies with predictable characteristics, in a completely decentralized, emerging way. We provide analytical support of our methodology and we validate it by large-scale (simulated) experiments.

References

  1. 1.
    Albert, R., Barabási, A.-L.: Emergence of scaling in random networks. Science (1999)Google Scholar
  2. 2.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys. Rev. E 71(3), 036113 (2005)Google Scholar
  4. 4.
    Caldarelli, G., Capocci, A., De Los Rios, P., Muñoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89(25), 258702 (2002)CrossRefGoogle Scholar
  5. 5.
    Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90(5), 058701 (2003)Google Scholar
  6. 6.
    Dangalchev, C.: Generation models for scale-free networks. Physica A: Statistical Mechanics and its Applications 338(3-4), 659–671 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    de Solla Price, D.J.: A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science 27(5), 292–306 (1976)CrossRefGoogle Scholar
  8. 8.
    Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic Algorithms for Replicated Database Maintenance, pp. 1–12. ACM Press, New York (1987)Google Scholar
  9. 9.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Pseudofractal scale-free web. Phys. Rev. E 65, 66122 (2002)CrossRefGoogle Scholar
  10. 10.
    Dorogovtsev, S.N., Mendes, J.F.F.: Effect of the accelerating growth of communications networks on their structure. Phys. Rev. E 63(2), 025101 (2001)Google Scholar
  11. 11.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633–4636 (2000)CrossRefGoogle Scholar
  12. 12.
    Yule, G.U.: A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. Journal of the Royal Statistical Society 88(3), 433–436 (1925)CrossRefGoogle Scholar
  13. 13.
    Flegel, F., Sokolov, I.M.: Canonical fitness model for simple scale-free graphs. Phys. Rev. E 87, 022806 (2013)Google Scholar
  14. 14.
    Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Phys. Rev. Lett. 85(21), 4629–4632 (2000)CrossRefGoogle Scholar
  15. 15.
    Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership management for unstructured p2p overlays.  13(2), 197–217 (June 2005)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Ana-Maria Oprescu
    • 1
  • Spyros Voulgaris
    • 2
  • Haralambie Leahu
    • 2
  1. 1.Universiteit van AmsterdamThe Netherlands
  2. 2.VU UniversityThe Netherlands

Personalised recommendations