Distributed Architecture for a Peer-to-Peer-Based Virtual Microscope

  • Andreas Jaegermann
  • Timm J. Filler
  • Michael Schoettner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7891)

Abstract

Virtual microscopes are commonly used in medical education. They provide a platform for distributing whole slide images (WSI) with several GB size to exploring students. Even in courses with a few hundred students and dozens of WSI the network traffic may be high, but it will vastly increase, when the system is opened to access from the Internet. The same applies to user-generated content like interactive annotations (each student generates approx. 200 labels per term). In a collection that consists of several thousand WSI, which need to be annotated for training or quiz-based purposes, there will be millions of user contributions. In an abstract view users navigate through a universe of WSI and annotations and may meet other users watching the same or related WSI. This paper presents a distributed architecture build on PathFinder for Internet-based virtual microscopy addressing the challenges of distributing tightly connected data chunks on an overlay network consisting of random graphs.

References

  1. 1.
    Aspnes, J., Shah, G.: Skip graphs. In: SODA, pp. 384–393 (2003)Google Scholar
  2. 2.
    Beaumont, O., Kermarrec, A.-M., Marchal, L., Rivière, É.: Voronet: A scalable object network based on voronoi tessellations. In: Proceedings of the 21st International Parallel and Distributed Processing Symposium (IPDPS 2007). Society Press (2007)Google Scholar
  3. 3.
    Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: Supporting scalable multi-attribute range queries. In: SIGCOMM 2004, pp. 353–366 (2004)Google Scholar
  4. 4.
    Bradler, D., Krumov, L., Mühlhäuser, M., Kangasharju, J.: PathFinder: Efficient lookups and efficient search in peer-to-peer networks. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 77–82. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Drake, R.L., McBride, J.M., Lachman, N., Pawlina, W.: Medical education in the anatomical sciences: The winds of change continue to blow. Anat. Sci. Educ. 2, 253–259 (2009)CrossRefGoogle Scholar
  6. 6.
    Rojo, M.G., García, G.B., Mateos, C.P., García, J.G., Vincente, M.C.: Critical comparison of 31 commercially available digital slide systems in pathology. International Journal of Surgical Pathology 14(4), 285–305 (2006)CrossRefGoogle Scholar
  7. 7.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001, pp. 149–160 (2001)Google Scholar
  9. 9.
    Terpstra, W.W., Leng, C., Buchmann, A.P.: Bubblestorm: Analysis of probabilistic exhaustive search in a heterogeneous peer-to-peer system. Technical Report TUD-CS-2007-2, Technische Universität Darmstadt (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Andreas Jaegermann
    • 1
  • Timm J. Filler
    • 1
  • Michael Schoettner
    • 2
  1. 1.Department of AnatomyUniversity of DuesseldorfGermany
  2. 2.Department of Computer ScienceUniversity of DuesseldorfGermany

Personalised recommendations