Walking on Data Words

  • Amaldev Manuel
  • Anca Muscholl
  • Gabriele Puppis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7913)


We see data words as sequences of letters with additional edges that connect pairs of positions carrying the same data value. We consider a natural model of automaton walking on data words, called Data Walking Automaton, and study its closure properties, expressiveness, and the complexity of paradigmatic problems. We prove that deterministic DWA are strictly included in non-deterministic DWA, that the former subclass is closed under all boolean operations, and that the latter class enjoys a decidable containment problem.


Regular Language Closure Property Tree Automaton Data Language Data Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theoretical Computer Science 411(4-5), 702–715 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bojańczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized. Theoretical Computer Science 350(2-3), 164–173 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular languages. SIAM Journal 38(2), 658–701 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Transactions on Computational Logic 12(4), 27 (2011)MathSciNetGoogle Scholar
  5. 5.
    Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Science 134(2), 329–363 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Libkin, L., Vrgoč, D.: Regular expressions for data words. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 274–288. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Transactions on Computational Logic 5(3), 403–435 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sipser, M.: Halting space-bounded computations. Theoretical Computer Science 10, 335–338 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Thomas, W.: Elements of an automata theory over partial orders. In: Partial Order Methods in Verification, pp. 25–40. Americal Mathematical Society (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Amaldev Manuel
    • 1
  • Anca Muscholl
    • 1
  • Gabriele Puppis
    • 1
  1. 1.LaBRIUniversity of BordeauxFrance

Personalised recommendations