The Probabilistic Min Dominating Set Problem

  • Nicolas Boria
  • Cécile Murat
  • Vangelis Th. Paschos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7913)


We present a natural wireless sensor network problem, which we model as a probabilistic version of the min dominating set problem. We show that this problem, being a generalization of the classical min dominating set, is NP-hard, even in bipartite graphs. We first study the complexity of probabilistic min dominating set in graphs where min dominating set is polynomial, mainly in trees and paths and then we give some approximation results for it.


Wireless Sensor Network Failure Probability Steiner Tree Problem Span Tree Problem Probabilistic Combinatorial Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sandos, A.C., Bendali, F., Mailfert, J., Duhamel, C., Hou, K.M.: Heuristics for designing energy-efficient wireless sensor network topologies. J. Networks 4, 436–444 (2009)Google Scholar
  2. 2.
    Jaillet, P.: Probabilistic traveling salesman problem. Technical Report 185, Operations Research Center. MIT, Cambridge Mass., USA (1985)Google Scholar
  3. 3.
    Bertsimas, D.J.: Probabilistic combinatorial optimization problems. Phd thesis, Operations Research Center. MIT, Cambridge Mass., USA (1988)Google Scholar
  4. 4.
    Averbakh, I., Berman, O., Simchi-Levi, D.: Probabilistic a priori routing-location problems. Naval Res. Logistics 41, 973–989 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bertsimas, D.J.: On probabilistic traveling salesman facility location problems. Transportation Sci. 3, 184–191 (1989)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bertsimas, D.J.: The probabilistic minimum spanning tree problem. Networks 20, 245–275 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bertsimas, D.J., Jaillet, P., Odoni, A.: A priori optimization. Oper. Res. 38, 1019–1033 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Jaillet, P.: A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper. Res. 36, 929–936 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jaillet, P.: Shortest path problems with node failures. Networks 22, 589–605 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Jaillet, P., Odoni, A.: The probabilistic vehicle routing problem. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies. North-Holland, Amsterdam (1988)Google Scholar
  11. 11.
    Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Estimation-based metaheuristics for the probabilistic traveling salesman problem. Computers and Operations Research 37, 1939–1951 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bianchi, L., Knowles, J., Bowler, N.: Local search for the probabilistic traveling salesman problem: correlation to the 2-p-opt and 1-shift algorithms. European J. Oper. Res. 161, 206–219 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Birattari, M., Balaprakash, P., Stützle, T., Dorigo, M.: Estimation-based local search for stochastic combinatorial optimization using delta evaluations: a case study on the probabilistic traveling salesman problem. INFORMS J. Computing 20, 644–658 (2008)zbMATHCrossRefGoogle Scholar
  14. 14.
    Campbell, A.M., Thomas, B.W.: Probabilistic traveling salesman problem with deadlines. Transportation Sci. 42, 1–21 (2008)CrossRefGoogle Scholar
  15. 15.
    Murat, C., Paschos, V.T.: On the probabilistic minimum coloring and minimum k-coloring. Discrete Appl. Math. 154, 564–586 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bourgeois, N., Della Croce, F., Escoffier, B., Murat, C., Paschos, V.T.: Probabilistic coloring of bipartite and split graphs. J. Comb. Optimization 17, 274–311 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Murat, C., Paschos, V.T.: A priori optimization for the probabilistic maximum independent set problem. Theoret. Comput. Sci. 270, 561–590 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Murat, C., Paschos, V.T.: The probabilistic minimum vertex-covering problem. Int. Trans. Opl. Res. 9, 19–32 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Murat, C., Paschos, V.T.: The probabilistic longest path problem. Networks 33, 207–219 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Paschos, V.T., Telelis, O.A., Zissimopoulos, V.: Steiner forests on stochastic metric graphs. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616, pp. 112–123. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Paschos, V.T., Telelis, O.A., Zissimopoulos, V.: Probabilistic models for the steiner tree problem. Networks 56, 39–49 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Boria, N., Murat, C., Paschos, V.T.: On the probabilistic min spanning tree problem. J. Mathematical Modelling and Algorithms (to appear)Google Scholar
  23. 23.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of computer computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  24. 24.
    Boria, N., Murat, C., Paschos, V.T.: An emergency management model for a wireless sensor network problem. In: Cahier du LAMSADE 325, LAMSADE, Université Paris-Dauphine (2012)Google Scholar
  25. 25.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9, 256–278 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383–390 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Slavík, P.: A tight analysis of the greedy algorithm for set cover. In: Proc. STOC 1996, pp. 435–441 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicolas Boria
    • 1
  • Cécile Murat
    • 1
  • Vangelis Th. Paschos
    • 1
    • 2
  1. 1.LAMSADE CNRS, UMR 7243Paris Sciences et Lettres Research University, Université Paris-DauphineFrance
  2. 2.Institut Universitaire de FranceFrance

Personalised recommendations