Parameterized Resolution with Bounded Conjunction

  • Stefan Dantchev
  • Barnaby Martin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7913)


We provide separations between the parameterized versions of Res(1) (Resolution) and Res(2). Using a different set of parameterized contradictions, we also separate the parameterized versions of Res*(1) (tree-Resolution) and Res*(2).


Free Choice Proof System Computable Function Parameterized Resolution Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atserias, A., Bonet, M.: On the automatizability of resolution and related propositional proof systems. In: 16th Annual Conference of the European Association for Computer Science Logic (2002)Google Scholar
  2. 2.
    Atserias, A., Bonet, M.L., Esteban, J.L.: Lower bounds for the weak pigeonhole principle and random formulas beyond resolution. Inf. Comput. 176(2), 136–152 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Beyersdorff, O., Galesi, N., Lauria, M.: Hardness of parameterized resolution. Technical report, ECCC (2010)Google Scholar
  4. 4.
    Beyersdorff, O., Galesi, N., Lauria, M.: Parameterized complexity of DPLL search procedures. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 5–18. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Beyersdorff, O., Galesi, N., Lauria, M., Razborov, A.: Parameterized bounded-depth frege is not optimal. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 630–641. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44(1), 36–50 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dantchev, S.: Relativisation provides natural separations for resolution-based proof systems. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 147–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Dantchev, S., Martin, B., Szeider, S.: Parameterized proof complexity. In: 48th IEEE Symp. on Foundations of Computer Science, pp. 150–160 (2007)Google Scholar
  9. 9.
    Dantchev, S., Martin, B., Szeider, S.: Parameterized proof complexity. Computational Complexity 20 (2011)Google Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. In: Monographs in Computer Science. Springer (1999)Google Scholar
  11. 11.
    Esteban, J.L., Galesi, N., Messner, J.: On the complexity of resolution with bounded conjunctions. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 220. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science, vol. XIV. An EATCS Series. Springer (2006)Google Scholar
  13. 13.
    Krajíĉek, J.: On the weak pigeonhole principle. Fundamenta Mathematica, 170, 123–140 (2001)Google Scholar
  14. 14.
    Martin, B.: Parameterized proof complexity and W[1]. CoRR: (2012)Google Scholar
  15. 15.
    Pudlák, P.: Proofs as games. American Mathematical Monthly, 541–550 (June-July 2000)Google Scholar
  16. 16.
    Segerlind, N., Buss, S.R., Impagliazzo, R.: A switching lemma for small restrictions and lower bounds for k-dnf resolution. SIAM J. Comput. 33(5), 1171–1200 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Dantchev
    • 1
  • Barnaby Martin
    • 2
  1. 1.School of Engineering and Computing Sciences, Science LaboratoriesDurham UniversityDurhamUK
  2. 2.CNRS / LIX UMR 7161École PolytechniquePalaiseauFrance

Personalised recommendations