A Short Tutorial on Order-Invariant First-Order Logic

  • Nicole Schweikardt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7913)


This paper gives a short introduction to order-invariant first-order logic and arb-invariant first-order logic. We present separating examples demonstrating the expressive power, as well as tools for proving certain expressive weaknesses of these logics.


Binary Tree Expressive Power Winning Strategy Relation Symbol Boolean Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Anderson, M., van Melkebeek, D., Schweikardt, N., Segoufin, L.: Locality from circuit lower bounds. SIAM Journal on Computing 41(6), 1481–1523 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge Univ. Press (2009)Google Scholar
  4. 4.
    Benedikt, M., Segoufin, L.: Towards a characterization of order-invariant queries over tame structures. Journal of Symbolic Logic 74(1), 168–186 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Courcelle, B.: The monadic second-order logic of graphs X: Linear orderings. Theoretical Computer Science 160(1&2), 87–143 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ebbinghaus, H.-D., Flum, J.: Finite model theory. Springer (1999)Google Scholar
  7. 7.
    Ganzow, T., Rubin, S.: Order-invariant MSO is stronger than Counting MSO in the finite. In: Proc. STACS 2008, pp. 313–324 (2008)Google Scholar
  8. 8.
    Grohe, M., Schwentick, T.: Locality of order-invariant first-order formulas. ACM Transactions on Computational Logic 1(1), 112–130 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Harwath, F., Schweikardt, N.: Regular tree languages, cardinality predicates, and addition-invariant FO. In: Proc. STACS 2012, pp. 489–500 (2012)Google Scholar
  10. 10.
    Håstad, J.: Computational limitations for small-depth circuits. PhD thesis. MIT (1986)Google Scholar
  11. 11.
    Hella, L., Libkin, L., Nurmonen, J.: Notions of locality and their logical characterizations over finite models. Journal of Symbolic Logic 64(4), 1751–1773 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Immerman, N.: Relational queries computable in polynomial time. Information and Control 68(1-3), 86–104 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Immerman, N.: Languages that capture complexity classes. SIAM Journal on Computing 16(4), 760–778 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Libkin, L.: Elements of Finite Model Theory. Springer (2004)Google Scholar
  15. 15.
    Makowsky, J.A.: Invariant Definability and P/poly. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL 1998. LNCS, vol. 1584, pp. 142–158. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Niemistö, H.: On locality and uniform reduction. In: Proc. LICS 2005, pp. 41–50 (2005)Google Scholar
  17. 17.
    Otto, M.: Epsilon-logic is more expressive than first-order logic over finite structures. Journal of Symbolic Logic 65(4), 1749–1757 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Potthoff, A.: Logische Klassifizierung regulärer Baumsprachen. PhD thesis, Christian-Albrechts-Universität Kiel (1994)Google Scholar
  19. 19.
    Rossman, B.: Successor-invariant first-order logic on finite structures. Journal of Symbolic Logic 72(2), 601–618 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Rossman, B.: On the constant-depth complexity of k-clique. In: Proc. STOC 2008, pp. 721–730 (2008)Google Scholar
  21. 21.
    Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM Transactions on Computational Logic 6(3), 634–671 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schweikardt, N.: On the expressive power of monadic least fixed point logic. Theoretical Computer Science 350(2-3), 325–344 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Schweikardt, N.: On the expressive power of logics with invariant uses of arithmetic predicates. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 85–87. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Schweikardt, N., Segoufin, L.: Addition-invariant FO and regularity. In: Proc. LICS 2010, pp. 273–282 (2010)Google Scholar
  25. 25.
    Schwentick, T.: On Winning Ehrenfeucht Games and Monadic NP. Annals of Pure and Applied Logic 79(1), 61–92 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Vardi, M.: The complexity of relational query languages. In: Proc. STOC 1982, pp. 137–146 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicole Schweikardt
    • 1
  1. 1.Goethe-Universität Frankfurt am MainGermany

Personalised recommendations