Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks

  • Panagiotis Ilia
  • George Oikonomou
  • Theo Tryfonas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7886)


The IEEE 802.15.4 standard for low-power radio communications defines techniques for the encryption of layer 2 network frames but does not discuss methods for the establishment of encryption keys. The constrained nature of wireless sensor devices poses many challenges to the process of key establishment. In this paper, we investigate whether any of the existing key exchange techniques developed for traditional, application-centric wireless sensor networks (WSN) are applicable and viable for IPv6 over Low power Wireless Personal Area Networks (6LoWPANs). We use Elliptic Curve Cryptography (ECC) to implement and apply the Elliptic Curve Diffie Hellman (ECDH) key exchange algorithm and we build a mechanism for generating, storing and managing secret keys. The mechanism has been implemented for the Contiki open source embedded operating system. We use the Cooja simulator to investigate a simple network consisting of two sensor nodes in order to identify the characteristics of the ECDH technique. We also simulate a larger network to examine the solution’s performance and scalability. Based on those results, we draw our conclusions, highlight open issues and suggest further work.


6LoWPAN Key Exchange ECC ECDH 


  1. 1.
    Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: Scalable coordination in sensor networks. In: Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking, Seattle, Washington, USA, pp. 263–270 (1999)Google Scholar
  2. 2.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. SIGPLAN Not. 35, 93–104 (2000)CrossRefGoogle Scholar
  3. 3.
    Dunkels, A.: Full TCP/IP for 8-bit architectures. In: Proceedings of the 1st International Conference on Mobile systems, Applications and Services, New York, pp. 85–98 (2003)Google Scholar
  4. 4.
    Hui, J.W., Culler, D.E.: IP is dead, long live IP for wireless sensor networks. In: Proc. 6th ACM Conference on Embedded Network Sensor Systems (SenSys 2008), New York, NY, USA, pp. 15–28 (2008)Google Scholar
  5. 5.
    Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets over IEEE 802.15.4 Networks, RFC 4944 (2007),
  6. 6.
    Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  7. 7.
    Zhang, J., Varadharajan, V.: Wireless sensor network key management survey and taxonomy. J. Netw. Comput. Appl. 33, 63–75 (2010)CrossRefGoogle Scholar
  8. 8.
    Roman, R., Alcaraz, C., Lopez, J., Sklavos, N.: Key management systems for sensor networks in the context of the Internet of Things. Computers & Electrical Engineering 37, 147–159 (2011)CrossRefGoogle Scholar
  9. 9.
    Winter, T. (ed.), Thubert, P. (ed.), Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J.P., Alexander, R.: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, RFC 6550 (2010),
  10. 10.
    Çamtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE/ACM Trans. Netw. 15, 346–358 (2007)CrossRefGoogle Scholar
  11. 11.
    Bechkit, W., Challal, Y., Bouabdallah, A., Tarokh, V.: A Highly Scalable Key Pre-Distribution Scheme for Wireless Sensor Networks. IEEE Transactions on Wireless Communications 12(2), 948–959 (2013)CrossRefGoogle Scholar
  12. 12.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 41–47. ACM, New York (2002)Google Scholar
  13. 13.
    Wang, H., Li, Q.: Efficient Implementation of Public Key Cryptosystems on Mote Sensors (Short Paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 519–528. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Wander, A.S., Gura, N., Eberle, H., Gupta, V., Shantz, S.C.: Energy analysis of public-key cryptography for wireless sensor networks. In: Third IEEE International Conference on Pervasive Computing and Communications - PerCom 2005, pp. 324–328 (2005)Google Scholar
  16. 16.
    Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key management part 1: General (revision 3). NIST special publication 800, 57 (2011)Google Scholar
  17. 17.
    Bianchi, G., Capossele, A.T., Mei, A., Petrioli, C.: Flexible key exchange negotiation for wireless sensor networks. In: Proceedings of the 5th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, pp. 55–62. ACM, New York (2010)CrossRefGoogle Scholar
  18. 18.
    Mzid, R., Boujelben, M., Youssef, H., Abid, M.: Adapting TLS handshake protocol for heterogenous IP-based WSN using identity based cryptography. In: 2010 International Conference on Communication in Wireless Environments and Ubiquitous Systems: New Challenges (ICWUS), Sousse, pp. 1–8 (2010)Google Scholar
  19. 19.
    Sustainable Computing Research (SCoRe) - ContikiECC,
  20. 20.
    Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor Networks. In: Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IPSN 2008, pp. 245–256 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Panagiotis Ilia
    • 1
  • George Oikonomou
    • 1
  • Theo Tryfonas
    • 1
  1. 1.Cryptography Group, Faculty of EngineeringUniversity of BristolBristolUK

Personalised recommendations