Skip to main content

Intriguingly Simple and Fast Transit Routing

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7933)

Abstract

This paper studies the problem of computing optimal journeys in dynamic public transit networks. We introduce a novel algorithmic framework, called Connection Scan Algorithm (CSA), to compute journeys. It organizes data as a single array of connections, which it scans once per query. Despite its simplicity, our algorithm is very versatile. We use it to solve earliest arrival and multi-criteria profile queries. Moreover, we extend it to handle the minimum expected arrival time (MEAT) problem, which incorporates stochastic delays on the vehicles and asks for a set of (alternative) journeys that in its entirety minimizes the user’s expected arrival time at the destination. Our experiments on the dense metropolitan network of London show that CSA computes MEAT queries, our most complex scenario, in 272 ms on average.

Keywords

  • Arrival Time
  • Priority Queue
  • Early Arrival
  • Stochastic Delay
  • Transit Route

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Partial support by DFG grant WA654/16-1 and EU grant 288094 (eCOMPASS).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38527-8_6
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-38527-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   95.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bast, H.: Car or Public Transport – Two Worlds. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  2. Bast, H., Carlsson, E., Eigenwillig, A., Geisberger, R., Harrelson, C., Raychev, V., Viger, F.: Fast Routing in Very Large Public Transportation Networks using Transfer Patterns. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 290–301. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  3. Bauer, R., Delling, D., Wagner, D.: Experimental Study on Speed-Up Techniques for Timetable Information Systems. Networks 57(1), 38–52 (2011)

    MathSciNet  CrossRef  Google Scholar 

  4. Berger, A., Delling, D., Gebhardt, A., Müller–Hannemann, M.: Accelerating Time-Dependent Multi-Criteria Timetable Information is Harder Than Expected. In: ATMOS. OpenAccess Series in Informatics (OASIcs) (2009)

    Google Scholar 

  5. Berger, A., Gebhardt, A., Müller–Hannemann, M., Ostrowski, M.: Stochastic Delay Prediction in Large Train Networks. In: ATMOS, pp. 100–111 (2011)

    Google Scholar 

  6. Delling, D., Katz, B., Pajor, T.: Parallel Computation of Best Connections in Public Transportation Networks. ACM JEA (2012) (to appear)

    Google Scholar 

  7. Delling, D., Pajor, T., Werneck, R.F.: Round-Based Public Transit Routing. In: ALENEX, pp. 130–140. SIAM (2012)

    Google Scholar 

  8. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Disser, Y., Müller–Hannemann, M., Schnee, M.: Multi-Criteria Shortest Paths in Time-Dependent Train Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 347–361. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  10. Geisberger, R.: Contraction of Timetable Networks with Realistic Transfers. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 71–82. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  11. Goerigk, M., Knoth, M., Müller–Hannemann, M., Schmidt, M., Schöbel, A.: The Price of Robustness in Timetable Information. In: ATMOS, pp. 76–87 (2011)

    Google Scholar 

  12. HaCon website (2013), http://www.hacon.de/hafas/

  13. London Data Store, http://data.london.gov.uk

  14. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable Information: Models and Algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  15. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Information in Public Transportation Systems. ACM JEA 12(2.4), 1–39 (2008)

    MathSciNet  CrossRef  Google Scholar 

  16. Sommer, C.: Shortest-Path Queries in Static Networks (2012) (submitted), Preprint available at http://www.sommer.jp/spq-survey.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dibbelt, J., Pajor, T., Strasser, B., Wagner, D. (2013). Intriguingly Simple and Fast Transit Routing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds) Experimental Algorithms. SEA 2013. Lecture Notes in Computer Science, vol 7933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38527-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38527-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38526-1

  • Online ISBN: 978-3-642-38527-8

  • eBook Packages: Computer ScienceComputer Science (R0)