Faster Customization of Road Networks

  • Daniel Delling
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)


A wide variety of algorithms can answer exact shortest-path queries in real time on continental road networks, but they typically require significant preprocessing effort. Recently, the customizable route planning (CRP) approach has reduced the time to process a new cost function to a fraction of a minute. We reduce customization time even further, by an order of magnitude. This makes it worthwhile even when a single query is to be run, enabling a host of new applications.


Short Path Road Network Distance Label Overlay Graph Nest Dissection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Project OSRM (2012),
  2. 2.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical Hub Labelings for Shortest Paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: SODA, pp. 782–793 (2010)Google Scholar
  4. 4.
    Bader, R., Dees, J., Geisberger, R., Sanders, P.: Alternative Route Graphs in Road Networks. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 21–32. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with Transit Nodes. Science 316(5824), 566 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bauer, R., Columbus, T., Katz, B., Krug, M., Wagner, D.: Preprocessing Speed-Up Techniques is Hard. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 359–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. ACM JEA 14(2.4), 1–29 (2009)MathSciNetGoogle Scholar
  8. 8.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM JEA 15(2.3), 1–31 (2010)MathSciNetGoogle Scholar
  9. 9.
    Bellman, R.: On a routing problem. Q. Appl. Math. 16(1), 87–90 (1958)zbMATHGoogle Scholar
  10. 10.
    Columbus, T.: Search space size in contraction hierarchies. Master’s thesis, Karlsruhe Institute of Technology (2012)Google Scholar
  11. 11.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable Route Planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph Partitioning with Natural Cuts. In: Proc. IPDPS, pp. 1135–1146. IEEE Computer Society (2011)Google Scholar
  13. 13.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem: 9th DIMACS Implementation Challenge. DIMACS Book, vol. 74. AMS (2009)Google Scholar
  14. 14.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Floyd, R.W.: Algorithm 97 (shortest paths). Comm. ACM 5(6), 345 (1962)CrossRefGoogle Scholar
  16. 16.
    Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton U. Press (1962)Google Scholar
  17. 17.
    Funke, S., Storandt, S.: Polynomial-time Construction of Contraction Hierarchies for Multi-criteria Queries. In: Proc. ALENEX, pp. 41–54. SIAM (2013)Google Scholar
  18. 18.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Contraction Hierarchies. Transportation Sci. 46(3), 388–404 (2012)CrossRefGoogle Scholar
  19. 19.
    Geisberger, R., Vetter, C.: Efficient Routing in Road Networks with Turn Costs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 100–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Goldberg, A.V.: A Practical Shortest Path Algorithm with Linear Expected Time. SIAM J. Comp. 37, 1637–1655 (2008)zbMATHCrossRefGoogle Scholar
  21. 21.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Shortest Path Algorithms with Preprocessing. In: Demetrescu, et al. (eds.) [13], pp. 93–139Google Scholar
  22. 22.
    Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Computations with Arc-Flags. In: Demetrescu, et al. (eds.) [13], pp. 41–72Google Scholar
  23. 23.
    Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level Overlay Graphs for Shortest-Path Queries. ACM JEA 13(2.5), 1–26 (2008)MathSciNetGoogle Scholar
  24. 24.
    Luxen, D., Sanders, P.: Hierarchy Decomposition and Faster User Equilibria on Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 242–253. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Milosavljevic, N.: On optimal preprocessing for contraction hierarchies. In: Proc. SIGSPATIAL IWCTS, pp. 6:1–6:6 (2012)Google Scholar
  26. 26.
    Yanagisawa, H.: A multi-source label-correcting algorithm for the all-pairs shortest paths problem. In: Proc. IPDPS, pp. 1–10 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Delling
    • 1
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon ValleyUSA

Personalised recommendations