Faster Customization of Road Networks

  • Daniel Delling
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)

Abstract

A wide variety of algorithms can answer exact shortest-path queries in real time on continental road networks, but they typically require significant preprocessing effort. Recently, the customizable route planning (CRP) approach has reduced the time to process a new cost function to a fraction of a minute. We reduce customization time even further, by an order of magnitude. This makes it worthwhile even when a single query is to be run, enabling a host of new applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Project OSRM (2012), http://project-osrm.org/
  2. 2.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical Hub Labelings for Shortest Paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: SODA, pp. 782–793 (2010)Google Scholar
  4. 4.
    Bader, R., Dees, J., Geisberger, R., Sanders, P.: Alternative Route Graphs in Road Networks. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 21–32. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with Transit Nodes. Science 316(5824), 566 (2007)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bauer, R., Columbus, T., Katz, B., Krug, M., Wagner, D.: Preprocessing Speed-Up Techniques is Hard. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 359–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. ACM JEA 14(2.4), 1–29 (2009)MathSciNetGoogle Scholar
  8. 8.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM JEA 15(2.3), 1–31 (2010)MathSciNetGoogle Scholar
  9. 9.
    Bellman, R.: On a routing problem. Q. Appl. Math. 16(1), 87–90 (1958)MATHGoogle Scholar
  10. 10.
    Columbus, T.: Search space size in contraction hierarchies. Master’s thesis, Karlsruhe Institute of Technology (2012)Google Scholar
  11. 11.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable Route Planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph Partitioning with Natural Cuts. In: Proc. IPDPS, pp. 1135–1146. IEEE Computer Society (2011)Google Scholar
  13. 13.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem: 9th DIMACS Implementation Challenge. DIMACS Book, vol. 74. AMS (2009)Google Scholar
  14. 14.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Floyd, R.W.: Algorithm 97 (shortest paths). Comm. ACM 5(6), 345 (1962)CrossRefGoogle Scholar
  16. 16.
    Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton U. Press (1962)Google Scholar
  17. 17.
    Funke, S., Storandt, S.: Polynomial-time Construction of Contraction Hierarchies for Multi-criteria Queries. In: Proc. ALENEX, pp. 41–54. SIAM (2013)Google Scholar
  18. 18.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Contraction Hierarchies. Transportation Sci. 46(3), 388–404 (2012)CrossRefGoogle Scholar
  19. 19.
    Geisberger, R., Vetter, C.: Efficient Routing in Road Networks with Turn Costs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 100–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Goldberg, A.V.: A Practical Shortest Path Algorithm with Linear Expected Time. SIAM J. Comp. 37, 1637–1655 (2008)MATHCrossRefGoogle Scholar
  21. 21.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Shortest Path Algorithms with Preprocessing. In: Demetrescu, et al. (eds.) [13], pp. 93–139Google Scholar
  22. 22.
    Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Computations with Arc-Flags. In: Demetrescu, et al. (eds.) [13], pp. 41–72Google Scholar
  23. 23.
    Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level Overlay Graphs for Shortest-Path Queries. ACM JEA 13(2.5), 1–26 (2008)MathSciNetGoogle Scholar
  24. 24.
    Luxen, D., Sanders, P.: Hierarchy Decomposition and Faster User Equilibria on Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 242–253. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Milosavljevic, N.: On optimal preprocessing for contraction hierarchies. In: Proc. SIGSPATIAL IWCTS, pp. 6:1–6:6 (2012)Google Scholar
  26. 26.
    Yanagisawa, H.: A multi-source label-correcting algorithm for the all-pairs shortest paths problem. In: Proc. IPDPS, pp. 1–10 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Delling
    • 1
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon ValleyUSA

Personalised recommendations