Advertisement

Telling Stories Fast

Via Linear-Time Delay Pitch Enumeration
  • Michele Borassi
  • Pierluigi Crescenzi
  • Vincent Lacroix
  • Andrea Marino
  • Marie-France Sagot
  • Paulo Vieira Milreu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)

Abstract

This paper presents a linear-time delay algorithm for enumerating all directed acyclic subgraphs of a directed graph G(V,E) that have their sources and targets included in two subsets S and T of V, respectively. From these subgraphs, called pitches, the maximal ones, called stories, may be extracted in a dramatically more efficient way in relation to a previous story telling algorithm. The improvement may even increase if a pruning technique is further applied that avoids generating many pitches which have no chance to lead to a story. We experimentally demonstrate these statements by making use of a quite large dataset of real metabolic pathways and networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acuña, V., Birmelé, E., Cottret, L., Crescenzi, P., Jourdan, F., Lacroix, V., Marchetti-Spaccamela, A., Marino, A., Milreu, P.V., Sagot, M.F., Stougie, L.: Telling stories: Enumerating maximal directed acyclic graphs with a constrained set of sources and targets. Theor. Comput. Sci. 457, 1–9 (2012)zbMATHCrossRefGoogle Scholar
  2. 2.
    Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems. Discrete Applied Mathematics 117(1-3), 253–265 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On Generating All Maximal Independent Sets. Inf. Process. Lett. 27(3), 119–123 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Avis, D., Fukuda, K.: Reverse Search for Enumeration. Discrete Applied Mathematics 65, 21–46 (1993)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Uno, T.: Two general methods to reduce delay and change of enumeration algorithms. NII Technical Report (2003)Google Scholar
  6. 6.
    Milreu, P.V.: Enumerating Functional Substructures of Genome-Scale Metabolic Networks: Stories, Precursors and Organisations. PhD thesis, Université Claude Bernard, Lyon 1, France (2012)Google Scholar
  7. 7.
    Milreu, P.V., Acuña, V., Birmelé, E., Borassi, M., Cottret, L., Junot, C., Klein, C., Marchetti-Spaccamela, A., Marino, A., Stougie, L., Jourdan, F., Lacroix, V., Crescenzi, P., Sagot, M.-F.: Metabolic stories: exploring all possible scenarios for metabolomics data analysi (in preparation, 2013)Google Scholar
  8. 8.
    Cottret, L., Wildridge, D., Vinson, F., Barrett, M.P., Charles, H., Sagot, M.F., Jourdan, F.: Metexplore: a web server to link metabolomic experiments and genome-scale metabolic networks. Nucleic Acids Research 38(Web-Server-Issue), 132–137 (2010)CrossRefGoogle Scholar
  9. 9.
    Johnson, C.H., Gonzalez, F.J.: Challenges and opportunities of metabolomics. Journal of Cellular Physiology 227(8), 2975–2981 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michele Borassi
    • 1
    • 2
  • Pierluigi Crescenzi
    • 3
  • Vincent Lacroix
    • 4
    • 5
  • Andrea Marino
    • 3
  • Marie-France Sagot
    • 4
    • 5
  • Paulo Vieira Milreu
    • 4
    • 5
  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Dipartimento di MatematicaUniversità di PisaPisaItaly
  3. 3.Dipartimento di Sistemi e InformaticaUniversità di FirenzeFirenzeItaly
  4. 4.Inria Rhône-Alpes & Université de LyonLyonFrance
  5. 5.CNRS, UMR5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon 1VilleurbanneFrance

Personalised recommendations