An Edge Quadtree for External Memory

  • Herman Haverkort
  • Mark McGranaghan
  • Laura Toma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7933)


We consider the problem of building a quadtree subdivision for a set \(\mathcal{E}\) of n non-intersecting edges in the plane. Our approach is to first build a quadtree on the vertices corresponding to the endpoints of the edges, and then compute the intersections between \(\mathcal{E}\) and the cells in the subdivision. For any k ≥ 1, we call a K-quadtree a linear compressed quadtree that has O(n/k) cells with O(k) vertices each, where each cell stores the edges intersecting the cell. We show how to build a K-quadtree in O(sort(n + l)) i/o’s, where l = O(n 2/k) is the number of such intersections. The value of k can be chosen to trade off between the number of cells and the size of a cell in the quadtree. We give an empirical evaluation in external memory on triangulated terrains and USA TIGER data. As an application, we consider the problem of map overlay, or finding the pairwise intersections between two sets of edges. Our findings confirm that the K-quadtree is viable for these types of data and its construction is scalable to hundreds of millions of edges.


External Memory Lower Left Corner Construction Time Current Interval Segment Intersection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Arge, L., Danner, A.: From point cloud to grid DEM: a scalable approach. In: Proc. 12th Symp. Spatial Data Handling, SDH 2006, pp. 771–788 (2006)Google Scholar
  2. 2.
    Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Commun. ACM 31, 1116–1127 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arge, L., Barve, R.D., Hutchinson, D., Procopiuc, O., Toma, L., Vahrenhold, J., Vengroff, D.E., Wickremesinghe, R.: TPIE user manual (2005)Google Scholar
  4. 4.
    de Berg, M., Haverkort, H., Thite, S., Toma, L.: Star-quadtrees and guard-quadtrees: I/O-efficient indexes for fat triangulations and low-density planar subdivisions. Computational Geometry 43(5), 493–513 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gargantini, I.: An effective way to represent quadtrees. Commun. ACM 25(12), 905–910 (1982)zbMATHCrossRefGoogle Scholar
  6. 6.
    Hjaltason, G., Samet, H.: Improved bulk-loading algorithms for quadtrees. In: Proc. ACM International Symposium on Advances in GIS, pp. 110–115 (1999)Google Scholar
  7. 7.
    Hjaltason, G., Samet, H., Sussmann, Y.: Speeding up bulk-loading of quadtrees. In: Proc. ACM International Symposium on Advances in GIS (1997)Google Scholar
  8. 8.
    Hjaltason, G.R., Samet, H.: Speeding up construction of PMR quadtree-based spatial indexes. VLDB Journal 11, 109–137 (2002)CrossRefGoogle Scholar
  9. 9.
    Hoel, E., Samet, H.: A qualitative comparison study of data structures for large segment databases. In: Proc. SIGMOD, pp. 205–213 (1992)Google Scholar
  10. 10.
    Nelson, R., Samet, H.: A population analysis for hierarchical data structures. In: Proc. SIGMOD, pp. 270–277 (1987)Google Scholar
  11. 11.
    Samet, H.: Spatial Data Structures: Quadtrees, Octrees, and Other Hierarchical Methods. Addison-Wesley, Reading (1989)Google Scholar
  12. 12.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan-Kaufmann (2006)Google Scholar
  13. 13.
    Samet, H., Shaffer, C., Webber, R.: The segment quadtree: a linear quadtree-based representation for linear features. Data Structures for Raster Graphics, 91–123 (1986)Google Scholar
  14. 14.
    Samet, H., Webber, R.: Storing a collection of polygons using quadtrees. ACM Transactions on Graphics 4(3), 182–222 (1985)CrossRefGoogle Scholar
  15. 15.
    Toma, L.: External Memory Graph Algorithms and Applications to Geographic Information Systems. PhD thesis, Duke University (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Herman Haverkort
    • 1
  • Mark McGranaghan
    • 2
  • Laura Toma
    • 2
  1. 1.Eindhoven University of TechnologyThe Netherlands
  2. 2.Bowdoin CollegeUSA

Personalised recommendations