Skip to main content

A Hybridized Particle Swarm Optimization with Expanding Neighborhood Topology for the Feature Selection Problem

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7919)

Abstract

This paper introduces a new algorithmic nature inspired approach that uses a hybridized Particle Swarm Optimization algorithm with a new neighborhood topology for successfully solving the Feature Selection Problem (FSP). The Feature Selection Problem is an interesting and important topic which is relevant for a variety of database applications. The proposed algorithm for the solution of the FSP, the Particle Swarm Optimization with Expanding Neighborhood Topology (PSOENT), combines a Particle Swarm Optimization (PSO) algorithm and the Variable Neighborhood Search (VNS) strategy. As, in general, the structure of the social network affects strongly a PSO algorithm, the proposed method by using an expanding neighborhood topology manages to increase the performance of the algorithm. As the algorithm starts from a small size neighborhood and by increasing (expanding) the size of the neighborhood, it ends to a neighborhood that includes all the swarm, it manages to take advantage of the exploration capabilities of a global neighborhood structure and of the exploitation abilities of a local neighborhood structure. In order to test the effectiveness and the efficiency of the proposed method we use data sets of different sizes and compare the proposed method with a number of other PSO algorithms and other algorithms from the literature.

Keywords

  • Feature Selection Problem
  • Particle Swarm Optimization
  • Expanding Neighborhood Topology
  • Variable Neighborhood Search

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-38516-2_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-38516-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casado Yusta, S.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recognition Letters 30, 525–534 (2009)

    CrossRef  Google Scholar 

  2. Chen, S.C., Lin, S.W., Chou, S.Y.: Enhancing the classification accuracy by scatter-search-based ensemble approach. Applied Soft Computing (2010), doi:10.1016/j.asoc.2010.01.024

    Google Scholar 

  3. Chen, Y., Miao, D., Wang, R.: A rough set approach to feature selection based on ant colony optimization. Pattern Recognition Letters 31, 226–233 (2010)

    CrossRef  Google Scholar 

  4. Clerc, M., Kennedy, J.: The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)

    CrossRef  Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.:Pattern Classification and Scene Analysis, 2nd edn. John Wiley and Sons, New York (2001)

    Google Scholar 

  6. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. John Wiley and Sons, England (2007)

    CrossRef  Google Scholar 

  7. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130, 449–467 (2001)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  9. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: Proceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108 (1997)

    Google Scholar 

  10. Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publisher, San Francisco (2001)

    Google Scholar 

  11. Lin, S.W., Chen, S.C.: PSOLDA: A Particle swarm optimization approach for enhancing classification accurate rate of linear discriminant analysis. Applied Soft Computing 9, 1008–1015 (2009)

    CrossRef  Google Scholar 

  12. Lin, S.W., Lee, Z.J., Chen, S.C., Tseng, T.Y.: Parameter determination of support vector machine and feature selection using simulated annealing approach. Applied Soft Computing 8, 1505–1512 (2008)

    CrossRef  Google Scholar 

  13. Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications 35, 1817–1824 (2008)

    CrossRef  Google Scholar 

  14. Garcia Lopez, F., Garcia Torres, M., Melian Batista, B., Moreno Perez, J.A., Moreno Vega, J.M.: Solving feature subset selection problem by a parallel scatter search. European Journal of Operational Research 169, 477–489 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Maldonado, S., Weber, R.: A wrapper method for feature selection using support vector machines. Information Sciences 179(13), 2208–2217 (2009)

    CrossRef  Google Scholar 

  16. Marinakis, Y., Marinaki, M.: Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem. Soft Computing (2013), doi:10.1007/s00500-013-0992-z

    Google Scholar 

  17. Marinakis, Y., Marinaki, M., Doumpos, M., Zopounidis, C.: Ant colony and particle swarm optimization for financial classification problems. Expert Systems with Applications 36(7), 10604–10611 (2009)

    CrossRef  Google Scholar 

  18. Pedrycz, W., Park, B.J., Pizzi, N.J.: Identifying core sets of discriminatory features using particle swarm optimization. Expert Systems with Applications 36, 4610–4616 (2009)

    CrossRef  Google Scholar 

  19. Rokach, L.: Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognition Letters 41, 1676–1700 (2008)

    MATH  CrossRef  Google Scholar 

  20. Suganthan, P.N.: Particle swarm optimiser with neighborhood operator. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1958–1962 (1999)

    Google Scholar 

  21. Uncu, O., Turksen, I.B.: A novel feature selection approach: Combining feature wrappers and filters. Information Sciences 177(2), 449–466 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marinakis, Y., Marinaki, M. (2013). A Hybridized Particle Swarm Optimization with Expanding Neighborhood Topology for the Feature Selection Problem. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds) Hybrid Metaheuristics. HM 2013. Lecture Notes in Computer Science, vol 7919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38516-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38516-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38515-5

  • Online ISBN: 978-3-642-38516-2

  • eBook Packages: Computer ScienceComputer Science (R0)