Skip to main content

The Control Analysis of Signal Transduction

  • Chapter
  • First Online:
Book cover Systems Biology of Metabolic and Signaling Networks

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 16))

  • 2032 Accesses

Abstract

This chapter discusses how metabolic control analysis (MCA) and generalisations thereof such as hierarchical control analysis (HCA) may help to understand the control of cell function through signal transduction, as well as the control of signal transduction itself. It reviews the key concepts of MCA paying attention to their applicability to signal transduction. Control analysis has already led to major insights into signal transduction such as that control of signalling tends to be distributed over multiple components and that the phosphatases are as important as, or more important than, the kinases. Examples of applications of control analysis in the medical domain are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberghina L, Westerhoff HV (eds) (2005) Systems biology: definitions and perspectives. Springer, Berlin

    Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  PubMed  CAS  Google Scholar 

  • Bakker BM, Michels PAM, Opperdoes FR, Westerhoff HV (1999) What controls glycolysis in bloodstream form Trypanosoma brucei? J Biol Chem 274:14551–9

    Article  PubMed  CAS  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–12

    Article  PubMed  Google Scholar 

  • Boogerd FC, Bruggeman FJ, Richardson RC, Stephan A, Westerhoff HV (2005) Emergence and its place in nature: a case study of biochemical networks. Synthese 145:131–64

    Article  Google Scholar 

  • Bruggeman FJ, Boogerd FC, Westerhoff HV (2005) The Multifarious short-term regualtion of ammonium assimilation of Escherichia coli: dissection using an in silico replica. FEBS J 272:1965–85

    Article  PubMed  CAS  Google Scholar 

  • Burns JA, Cornish-Bowden A, Groen AK, Heinrich H, Kacser H, Porteous JW et al (1985) Control of metabolic systems. Trends Biochem Sci 10:16

    Article  CAS  Google Scholar 

  • Caplan SR, Essig A (1969) Oxidative phosphorylation: thermodynamic criteria for the chemical and chemiosmotic hypotheses. Proc Natl Acad Sci USA 64:211–18

    Article  PubMed  CAS  Google Scholar 

  • Conradie R, Bruggeman FJ, Ciliberto A, Csikász-Nagy A, Novák B, Westerhoff HV et al (2010) Restriction point control of the mammalian cell cycle via the cyclin E/Cdk2:p27 complex. FEBS J 277:357–67

    Article  PubMed  CAS  Google Scholar 

  • Cortassa S, Aon MA, Westerhoff HV (1991) Linear nonequilibrium thermodynamics describes the dynamics of an autocatalytic system. Biophys J 60:794–803

    Article  PubMed  CAS  Google Scholar 

  • Dykhuizen DE, Dean AM, Hartl DL (1987) Metabolic flux and fitness. Genetics 115:25–31

    PubMed  CAS  Google Scholar 

  • Eisenthal R, Cornish-Bowden A (1998) Prospects for antiparasitic drugs: the case of Trypanosoma brucei, the causative agent of African sleeping sickness. J Biol Chem 273:5500–05

    Article  PubMed  CAS  Google Scholar 

  • Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286:313–30

    PubMed  CAS  Google Scholar 

  • Flint HJ, Tateson RW, Barthelmess IB, Porteous DJ, Donachie WD, Kacser H (1981) Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentration. Biochem J 200:231–46

    PubMed  CAS  Google Scholar 

  • García-Contreras R, Vos P, Westerhoff HV, Boogerd FC (2012) Why in vivo may not equal in vitro – new effectors revealed by measurement of enzymatic activities under the same in vivo-like assay conditions. FEBS J 279:4145–59

    Article  PubMed  Google Scholar 

  • Getz WM, Westerhoff HV, Hofmeyr J-HS, Snoep JL (2003) Control analysis of trophic chains. Ecol Model 168:153–71

    Article  Google Scholar 

  • Giersch C (1988) Control analysis of metabolic networks. Eur J Biochem 174:509–13

    Article  PubMed  CAS  Google Scholar 

  • Groen AK, Wanders RJ, Westerhoff HV, van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257:2754–57

    PubMed  CAS  Google Scholar 

  • Groen AK, Vervoorn RC, Van der Meer R, Tager JM (1983) Control of gluconeogenesis in rat liver cells. I. Kinetics of the individual enzymes and the effect of glucagon. J Biol Chem 258:14346–53

    PubMed  CAS  Google Scholar 

  • Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. General properties, control, effector strength. Eur J Biochem 42:89–95

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Neel BG, Rapoport TA (2002) Mathematical models of protein kinase signal transduction. Mol Cell 9:957–70

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE et al (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7:e1000238

    Article  PubMed  Google Scholar 

  • Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N et al (2006) COPASI-a COmplex PAthway SImulator. Bioinformatics 22:3067–74

    Article  PubMed  CAS  Google Scholar 

  • Hornberg JJ, Binder B, Bruggeman FJ, Schoeberl B, Heinrich R, Westerhoff HV (2005a) Control of MAPK signalling: from complexity to what really matters. Oncogene 24:5533–42

    Article  PubMed  CAS  Google Scholar 

  • Hornberg JJ, Bruggeman FJ, Binder B, Geest CR, de Vaate AJMB, Lankelma J et al (2005b) Principles behind the multifarious control of signal transduction. FEBS J 272:244–58

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Westerhoff HV, Michelsen O (1993) Excess capacity of H+-ATPase and nverse respiratory control in Escherichia coli. EMBO J 12:1277–87

    PubMed  CAS  Google Scholar 

  • Jensen PR, van der Weijden CC, Jensen LB, Westerhoff HV, Snoep JL (2000) Extensive regulation compromises the extent to which DNA gyrase controls DNA supercoiling and growth rate of Escherichia col. Eur J Biochem 266:865–77

    Article  Google Scholar 

  • Kacser H, Burn JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    PubMed  CAS  Google Scholar 

  • Kahn D, Westerhoff HV (1991) Control theory of regulatory cascades. J Theor Biol 153:255–85

    Article  PubMed  CAS  Google Scholar 

  • Kholodenko BN, Molenaar D, Schuster S, Heinrich R, Westerhoff HV (1995) Defining control coefficients in “non-ideal” metabolic pathways. Biophys Chem 56:215–26

    Article  PubMed  CAS  Google Scholar 

  • Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 99:12841–46

    Article  PubMed  CAS  Google Scholar 

  • Kolodkin AN, Bruggeman FJ, Plant N, Moné MJ, Bakker BM, Campbell MJ, van Leeuwen JP, Carlberg C, Snoep JL, Westerhoff HV (2010) Design principles of nuclear receptor signaling: how complex networking improves signal transduction. Mol Syst Biol 6(446):102

    Google Scholar 

  • Kolodkin A, Simeonidis E, Westerhoff HV (2012) Computing life: add logos to biology and bios to physics. Prog Biophys Mol Biol 111(2–3):69–74

    Google Scholar 

  • Letellier T, Malgat RR, Mazat JP (1998) Metabolic control analysis and mitochondrial pathologies. Mol Cell Biochem 184:409–17

    Article  PubMed  CAS  Google Scholar 

  • Michaelis M, Menten ML (1913) Kinetics invertinwirkung. Biochem J 49:333–69

    CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–8

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Sánchez R, Encalada R, Marín-Hernández A, Saavedra E (2008) Experimental validation of metabolic pathway modeling. FEBS J 275:3454–69

    Article  PubMed  Google Scholar 

  • Moreno-Sanchez R, Saavedra E, Rodriguez-Enriquez S, Gallardo-Perez JC, Quezada H, Westerhoff HV (2010) Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 10:626–39

    Article  PubMed  CAS  Google Scholar 

  • Niederberger P, Prasad R, Miozzari G, Kacser H (1992) A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem J 287:473–79

    PubMed  CAS  Google Scholar 

  • Olivier BG, Snoep JL (2004) Web-based modelling using JWS-Online. Bioinformatics 20:2143–44

    Article  PubMed  CAS  Google Scholar 

  • Ortega F, Acerenza L, Westerhoff HV, Mas F, Cascante M (2002) Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades. Proc Natl Acad Sci USA 99:1170–75

    Article  PubMed  CAS  Google Scholar 

  • Quinton-Tulloch MJ, Bruggeman FJ, Snoep JL, Westerhoff HV (2013) Trade-off of dynamic fragility but not of robustness in metabolic pathways in silico. FEBS J 280:160–73

    Article  PubMed  CAS  Google Scholar 

  • Rigoulet M, Leverve XM, Plomp PAJ, Meijer AJ (1987) Stimulation by glucose of gluconeogenesis in hepatocytes isolated from starved rats. Biochem J 245:661–8

    PubMed  CAS  Google Scholar 

  • Rigoulet M, Averet N, Mazat JP, Guerin B, Cohadon F (1988) Redistribution of the flux-control coefficients in mitochondrial oxidative phosphorylations in the course of brain edema. Biochim Biophys Acta 932:116–23

    Article  PubMed  CAS  Google Scholar 

  • Savageau MA (1976) Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley, Reading, MA

    Google Scholar 

  • Schuster R, Holzhutter HG (1995) Use of mathematical models for predicitng the metabolic effects of large-scale enzyme-activity alterations. Eur J Biochem 229:403–18

    Article  PubMed  CAS  Google Scholar 

  • Schuster S, Hilgetag C, Woods JH, Fell DA (2002) Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J Math Biol 45:153–81

    Article  PubMed  CAS  Google Scholar 

  • Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419–25

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Fell DA (1998) The role of multiple enzyme activation in metabolic flux control. Adv Enzyme Regul 38:65–85

    Article  PubMed  CAS  Google Scholar 

  • Torres NV, Mateo F, Melendez-Hevia E, Kacser H (1986) Kinetics of metabolic pathways. A system in vitro to study the general control of flux. Biochem J 234:169–74

    PubMed  CAS  Google Scholar 

  • Van Dam K, Van der Vlag J, Kholodenko BN, Westerhoff HV (1993) The sum of the control coefficients of all enzymes on the flux through a group transfer pathway can be as high as two. Eur J Biochem 212:791–99

    Article  PubMed  Google Scholar 

  • van Driel R, Fransz PF, Verschure PJ (2003) The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 116:4067–75

    Article  PubMed  Google Scholar 

  • van Eunen K, Bouwman J, Daran-Lapujade P, Postmus J, Canelas AB, Mensonides FIC et al (2010) Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS J 277:749–60

    Article  PubMed  Google Scholar 

  • Verma M, Bhat PJ, Venkatesh KV (2003) Quantitative analysis of GAL genetic switch of Saccharomyces cerevisiae reveals that nucleocytoplasmic shuttling of Gal80p results in a highly sensitive response to galactose. J Biol Chem 278:48764–69

    Article  PubMed  CAS  Google Scholar 

  • Verma M, Zakhartsev M, Reuss M, Westerhoff HV (2013) ‘Domino’ systems biology and the ‘A’ of ATP. Biochim Biophys Acta 1827:19–29

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc Biol Sci 7:1803–10

    Article  Google Scholar 

  • Westerhoff HV (2008) Signalling control strength. J Theor Biol 252:555–67

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff HV, Chen Y-D (1984) How do enzyme activities control metabolite concentrations? Eur J Biochem 142:425–30

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff HV, Dam KV (1987) Thermodynamics and control of biological free-energy transduction. Elsevier, Amsterdam

    Google Scholar 

  • Westerhoff HV, Kell DB (1987) Matrix method for determining steps most rate-limiting to metabolic fluxes in biotechnological processes. Biotechnol Bioeng 30:101–7

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249–52

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff H, van Workum M (1990) Control of DNA structure and gene expression. Biomed Biochim Acta 49:839–53

    PubMed  CAS  Google Scholar 

  • Westerhoff HV, Aon MA, Kv D, Cortassa S, Kahn D, Mv W (1990) Dynamical and hierarchical coupling. Biochim Biophys Acta 1018:142–46

    Article  CAS  Google Scholar 

  • Westerhoff HV, Kolodkin A, Conradie R, Wilkinson S, Bruggeman F, Krab K et al (2009a) Systems biology towards life in silico: mathematics of the control of living cells. J Math Biol 58:7–34

    Article  PubMed  Google Scholar 

  • Westerhoff HV, Winder C, Messiha H, Simeonidis E, Adamczyk M, Verma M et al (2009b) Systems biology: the elements and principles of life. FEBS Lett 583:3882–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

HVW, MV, and SR thank the transnational program Systems Biology of MicroOrganisms (SysMO) and ERASysBioprogram and its funders EPSRC/BBSRC for supporting the following projects (R111828, MOSES project, ERASysBio, BB/F003528/1, BB/C008219/1, BB/F003544/1, BB/I004696/1, BB/I00470X/1, BB/I017186/1, EP/D508053/1, BB/I017186/1). HVW also thanks other contributing funding sources including the NWO, and EU-FP7 (EC-MOAN, UNICELLSYS, SYNPOL, ITFOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans V. Westerhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Westerhoff, H.V., Rehman, S., Boogerd, F.C., Yilmaz, N., Verma, M. (2014). The Control Analysis of Signal Transduction. In: Aon, M., Saks, V., Schlattner, U. (eds) Systems Biology of Metabolic and Signaling Networks. Springer Series in Biophysics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38505-6_3

Download citation

Publish with us

Policies and ethics