Skip to main content

Attitude Control of Solar Sail Spacecraft Using Fractional-Order PID Controller

  • Conference paper
  • First Online:
Proceedings of 2013 Chinese Intelligent Automation Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 255))

  • 2597 Accesses

Abstract

In consideration of the extreme flexibility characteristics of film sail and large-scale booms of solar sail, a nonlinear rigid-flexible coupling dynamic model is presented. Based on the coupling dynamic model, a fractional order PID controller is designed to stabilize the system. The simulation results show the effectiveness of the proposed method, as the asymptotic tracking of the sail target attitude angle and robust vibration suppression of flexible structures are all achieved, and results is much better compared with the traditional PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McInnes CR (1999) Solar sailing: technology, dynamics, and mission applications. Springer, London

    Book  Google Scholar 

  2. Frisbee RH (2003) Advanced propulsion for the 21st century. In: Proceedings of AIAA/ICAS international air and space symposium and exposition: the next 100 Y. Dayton, Ohio, 14–17 Jul 2003

    Google Scholar 

  3. Wie B (2002) Dynamic modeling and attitude control of solar sail spacecraft. NASA solar sail technology working group (SSTWG) final report

    Google Scholar 

  4. Leipold M, Eiden M et al (2003) Solar sail technology development and demonstration. Acta Astronaut 52(2–6):317–326

    Article  Google Scholar 

  5. Leipold M, Garner CE, Freeland R, Herrmann A, Pagal GNM (1998) ODISSEE-a proposal for demonstration of a solar sail in earth orbit. Acta Astronaut 45(4):557–566

    Google Scholar 

  6. Wie B (2004) Solar sail attitude control and dynamics, part I. J Guidance Control Dyn 27(4):526–535

    Article  MathSciNet  Google Scholar 

  7. Wie B (2004) Solar sail attitude control and dynamics, part II. J Guidance Control Dyn 27(4):536–544

    Article  MathSciNet  Google Scholar 

  8. Wie B, Murphy D (2004) Robust attitude control systems design for solar sail, part 1: Propellantless primary ACS. In: Proceedings of AIAA guidance, navigation, and control conference and exhibit, providence, Rhode Island, 2004, pp 1–28

    Google Scholar 

  9. Wie B, Murphy D (2004) Robust attitude control systems design for solar sail, part 2: MicroPPT-based secondary ACS. In: Proceedings of AIAA guidance, navigation, and control conference and exhibit, providence, Rhode Island, 2004, pp 1–16

    Google Scholar 

  10. Zhang Y (2010) Attitude control and trajectory optimization of solar sail spacecraft. University of Science and Technology of China, Hefei (in Chinese 张洋. 太阳帆航天器姿态控制与轨迹优化[D]. 合肥, 中国科学技术大学. 2010.)

    Google Scholar 

  11. Zhu M, Zhang Y, Wei Y, Wang Y (2013) Attitude dynamic modeling and feedback LPV control of solar sail. Inf Control 42(2):196–201 (in Chinese 朱敏, 张洋, 卫一恒, 王永. 太阳帆航天器姿态动力学建模与反馈LPV控制[J]. 信息与控制. 已收录.)

    Google Scholar 

  12. Podlubny I (1999) Fractional differential equations. Academic press, New York

    MATH  Google Scholar 

  13. Chen YQ, Monje CM, Vinagre BM, Xue D, Feliu V (2010) Fractional-order systems and controls—fundamentals and applications. Springer, London

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 60974103&61004017), and the National 863 Project (no. 2011AA7034056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Zhu, M., Wei, Y., Peng, C., Zhang, Y. (2013). Attitude Control of Solar Sail Spacecraft Using Fractional-Order PID Controller. In: Sun, Z., Deng, Z. (eds) Proceedings of 2013 Chinese Intelligent Automation Conference. Lecture Notes in Electrical Engineering, vol 255. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38460-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38460-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38459-2

  • Online ISBN: 978-3-642-38460-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics