Skip to main content

d-Separation: Strong Completeness of Semantics in Bayesian Network Inference

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7884))

Included in the following conference series:

Abstract

It is known that d-separation can determine the minimum amount of information needed to process a query during exact inference in discrete Bayesian networks. Unfortunately, no practical method is known for determining the semantics of the intermediate factors constructed during inference. Instead, all inference algorithms are relegated to denoting the inference process in terms of potentials. In this theoretical paper, we give an algorithm, called Semantics in Inference (SI), that uses d-separation to denote the semantics of every potential constructed during inference. We show that SI possesses four salient features: polynomial time complexity, soundness, completeness, and strong completeness. SI provides a better understanding of the theoretical foundation of Bayesian networks and can be used for improved clarity, as shown via an examination of Bayesian network literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butz, C.J., Hua, S., Konkel, K., Yao, H.: Join Tree Propagation with Prioritized Messages. Networks 55(4), 350–359 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Butz, C.J., Konkel, K., Lingras, P.: Join Tree Propagation Utilizing both Arc Reversal and Variable Elimination. Int. J. Approx. Reasoning 52(7), 948–959 (2011)

    Article  MathSciNet  Google Scholar 

  3. Butz, C.J., Yan, W., Lingras, P., Yao, Y.Y.: The CPT Structure of Variable Elimination in Discrete Bayesian Networks. In: Ras, Z.W., Tsay, L.S. (eds.) Advances in Intelligent Information Systems. SCI, vol. 265, pp. 245–257. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Castillo, E., Gutiérrez, J., Hadi, A.: Expert Systems and Probabilistic Network Models. Springer, New York (1997)

    Book  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  6. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  7. Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams. Springer, New York (2008)

    Book  MATH  Google Scholar 

  8. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  9. Madsen, A.L.: A Differential Semantics of Lazy AR Propagation. In: 21st Conference on Uncertainty in Artificial Intelligence, pp. 364–371. Morgan Kaufmann, San Mateo (2005)

    Google Scholar 

  10. Madsen, A.L.: Improvements to Message Computation in Lazy Propagation. Int. J. Approximate Reasoning 51(5), 499–514 (2010)

    Article  MathSciNet  Google Scholar 

  11. Meek, C.: Strong Completeness and Faithfulness in Bayesian Networks. In: 11th Conference on Uncertainty in Artificial Intelligence, pp. 411–418. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  12. Pearl, J.: Fusion, Propagation and Structuring in Belief Networks. Artif. Intell. 29, 241–288 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  14. Pearl, J.: Belief Networks Revisited. Artif. Intell. 59, 49–56 (1993)

    Article  Google Scholar 

  15. Shafer, G.: Probabilistic Expert Systems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  16. Wong, S.K.M., Butz, C.J., Wu, D.: On the Implication Problem for Probabilistic Conditional Independency. IEEE Trans. Syst. Man Cybern. A 30(6), 785–805 (2000)

    Article  Google Scholar 

  17. Zhang, N.L., Poole, D.: A Simple Approach to Bayesian Network Computations. In: 7th Canadian Conference on Artificial Intelligence, pp. 171–178. Springer, New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Butz, C.J., Yan, W., Madsen, A.L. (2013). d-Separation: Strong Completeness of Semantics in Bayesian Network Inference. In: Zaïane, O.R., Zilles, S. (eds) Advances in Artificial Intelligence. Canadian AI 2013. Lecture Notes in Computer Science(), vol 7884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38457-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38457-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38456-1

  • Online ISBN: 978-3-642-38457-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics