Skip to main content

Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7884))

Included in the following conference series:

Abstract

Multi-instance learning is different than standard propositional classification, because it uses a set of bags containing many instances as input. The instances in each bag are not labeled, but the bags themselves are labeled positive or negative. Our research shows that classification of multi-instance data with imbalanced class distributions significantly decreases the performance normally achievable by most multi-instance algorithms, which is the same as the performance of most standard, single-instance classifier learning algorithms. In this paper, we present and analyze this multi-instance class imbalance problem, and propose a novel solution framework. We focus on how to utilize the extended AdaBoost techniques applicable to most multi-instance classifier learning algorithms. Cost-sensitive boosting algorithms are developed by introducing cost items into the learning framework of AdaBoost, to enable classification of imbalanced multi-instance datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Machine Learning: Proceedings of the Thirteenth International Conference, pp. 148–156 (1996)

    Google Scholar 

  2. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided selection. In: Proceddings of the Fourteenth International Conference on Machine Learning, pp. 179–186 (1997)

    Google Scholar 

  3. Dietterich, T., Lathrop, R., Lozano-P´erez, T.: Solving the multiple instance problem with the axis-parallel rectangles. Artificial Intelligence 89(1-2), 31–71 (1997)

    Article  MATH  Google Scholar 

  4. Maron, O., Lozano-Pérez, T.: A framework for multiple instance learning. In: Proc. of the 1997 Conf. on Advances in Neural Information Processing Systems 10, pp. 570–576 (1998)

    Google Scholar 

  5. Fan, W., Stolfo, S.J., Zhang, J., Chan, P.K.: AdaCost: Misclassification Cost-Sensitive Boosting. In: Proc. Int’l Conf. Machine Learning, pp. 97–105 (1999)

    Google Scholar 

  6. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

  7. Ting, K.M.: A Comparative Study of Cost-Sensitive Boosting Algorithms. In: Proc. Int’l Conf. Machine Learning, pp. 983–990 (2000)

    Google Scholar 

  8. Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning approach. In: ICML (2000)

    Google Scholar 

  9. Japkowicz, N.: Learning from Imbalanced Data Sets: A Comparison of Various Strategies. In: Proc. Am. Assoc. for Artificial Intelligence (AAAI) Workshop Learning from Imbalanced Data Sets, pp. 10-15 (Technical Report WS-00-05) (2000)

    Google Scholar 

  10. Zhang, Q., Goldman, S.A.: EM-DD: An improved multiple instance learning technique. In: Neural Information Processing Systems 14 (2001)

    Google Scholar 

  11. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proc. Int’l Joint Conf. Artificial Intelligence, pp. 973–978 (2001)

    Google Scholar 

  12. Ting, K.M.: An Instance-Weighting Method to Induce Cost-Sensitive Trees. IEEE Trans. Knowledge and Data Eng. 14(3), 659–665 (2002)

    Article  Google Scholar 

  13. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

  14. Zhang, M.L., Goldman, S.: Em-dd: An improved multi-instance learning technique. In: NIPS (2002)

    Google Scholar 

  15. Andrews, S., Tsochandaridis, I., Hofman, T.: Support vector machines for multiple instance learning. Adv. Neural. Inf. Process. Syst. 15, 561–568 (2003)

    Google Scholar 

  16. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. ACM SIGKDD Explorations Newsletter 6(1), 20–29 (2004)

    Article  Google Scholar 

  17. Blockeel, H., Page, D., Srinivasan, A.: Multi-instance tree learning. In: ICML (2005)

    Google Scholar 

  18. Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-Sensitive Boosting for Classification of Imbalanced Data. Pattern Recognition 40(12), 3358–3378 (2007)

    Article  MATH  Google Scholar 

  19. Foulds, J., Frank, E.: Revisiting multiple-instance learning via embedded instance selection. In: Wobcke, W., Zhang, M. (eds.) 21st Australasian Joint Conference on Artificial Intelligence Auckland, New Zealand, pp. 300–310 (2008)

    Google Scholar 

  20. Leistner, C., Saffari, A., Bischof, H.: MIForests: Multiple-instance learning with randomized trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 29–42. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Bjerring, L., Frank, E.: Beyond trees: Adopting MITI to learn rules and ensemble classifiers for multi-instance data. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 41–50. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press (2011)

    Google Scholar 

  23. Wang, X., Shao, H., Japkowicz, N., Matwin, S., Liu, X., Bourque, A., Nguyen, B.: Using SVM with Adaptively Asymmetric Misclassification Costs for Mine-Like Objects Detection. In: ICMLA (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Matwin, S., Japkowicz, N., Liu, X. (2013). Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets. In: Zaïane, O.R., Zilles, S. (eds) Advances in Artificial Intelligence. Canadian AI 2013. Lecture Notes in Computer Science(), vol 7884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38457-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38457-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38456-1

  • Online ISBN: 978-3-642-38457-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics