Skip to main content

Memetic Algorithms for Dynamic Optimization Problems

  • Conference paper
Evolutionary Computation for Dynamic Optimization Problems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 490))

  • 2280 Accesses

Abstract

Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This chapter investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of memetic algorithms, which combines the features of greedy crossover-based hill climbing and steepest mutation-based hill climbing. In order to address the convergence problem, a new immigrants scheme, where the immigrant individuals can be generated from mutating an elite individual adaptively, is also introduced into the proposed memetic algorithm for dynamic optimization problems. Based on a series of dynamic problems generated from several stationary benchmark problems, experiments are carried out to investigate the performance of the proposed memetic algorithm in comparison with some peer algorithms. The experimental results show the efficiency of the proposed memetic algorithm in dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Tech. Rep. CMU-CS-94-163, Carnegie Mellon University, USA (1994)

    Google Scholar 

  2. Bosman, P.A.N., Poutré, H.L.: Learning and anticipation in online dynamic optimization with evolutionary algorithms: the stochastic case. In: Proc. 2007 Genetic and Evol. Comput. Conf., pp. 1165–1172 (2007)

    Google Scholar 

  3. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proc. 1999 IEEE Congr. Evol. Comput., pp. 1875–1882 (1999)

    Google Scholar 

  4. Branke, J., Kaußler, T., Schmidth, C., Schmeck, H.: A multi-population approach to dynamic optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf., pp. 299–308 (2000)

    Google Scholar 

  5. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environment. Tech. Rep. AIC-90-001, Naval Research Laboratory, Washington, USA (1990)

    Google Scholar 

  6. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  7. Eriksson, R., Olsson, B.: On the behavior of evolutionary global-local hybrids with dynamic fitness functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 13–22. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Eriksson, R., Olsson, B.: On the Performance of Evolutionary Algorithms with life-time adaptation in dynamic fitness landscapes. In: Proc. 2004 IEEE Congr. Evol. Comput., pp. 1293–1300 (2004)

    Google Scholar 

  9. Gallardo, J.E., Cotta, C., Ferndez, A.J.: On the hybridization of memetic algorithms with branch-and-bound techniques. IEEE Trans. Syst., Man, and Cybern.-Part B: Cybern. 37(1), 77–83 (2007)

    Article  Google Scholar 

  10. Goh, C.K., Tan, K.C.: A competitive-cooperation coevolutionary paradigm for dynamic multi-objective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)

    Article  Google Scholar 

  11. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Proc. 2nd Int. Conf. on Genetic Algorithms, pp. 59–68 (1987)

    Google Scholar 

  12. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd Int. Conf. Parallel Problem Solving From Nature, pp. 137–144 (1992)

    Google Scholar 

  13. Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: Proc. 2006 Genetic and Evol. Comput. Conf., pp. 1201–1208 (2006)

    Google Scholar 

  14. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7(2), 204–223 (2003)

    Article  Google Scholar 

  15. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments–A survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  16. Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 9(5), 474–487 (2005)

    Article  Google Scholar 

  17. Lau, T.L., Tsang, E.P.K.: Applying a mutation-based genetic algorithm to processor configuration problems. In: Proc. 8th IEEE Conf. on Tools with Artif. Intell., pp. 17–24 (1996)

    Google Scholar 

  18. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)

    Article  Google Scholar 

  19. Liu, D., Tan, K.C., Goh, C.K., Ho, W.K.: A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans. Syst., Man, and Cybern.-Part B: Cybern. 37(1), 42–50 (2007)

    Article  Google Scholar 

  20. Liu, B., Wang, L., Jin, Y.H.: An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst., Man, and Cybern.-Part B: Cybern. 37(1), 18–27 (2007)

    Article  Google Scholar 

  21. Man, S., Liang, Y., Leung, K.S., Lee, K.H., Mok, T.S.K.: A memetic algorithm for multiple-drug cancer chemotherapy schedule optimization. IEEE Trans. Syst., Man, and Cybern.-Part B: Cybern. 37(1), 84–91 (2007)

    Article  Google Scholar 

  22. Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.S.: An adaptive multimeme algorithm for designing HIV multidrug therapies. IEEE/ACM Trans. Comput. Biology and Bioinform. 4(2), 264–278 (2007)

    Article  Google Scholar 

  23. Neri, F., Toivanen, J., Makinen, A.R.E.: An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV. Applied Intell. 27(3), 219–235 (2007)

    Article  Google Scholar 

  24. Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the state of the art. Swarm and Evol. Comput. 6, 1–24 (2012)

    Article  Google Scholar 

  26. Ong, Y.S., Keane, A.J.: Meta-lamarckian learning in memetic algorithms. IEEE Trans. Evol. Comput. 8(2), 99–110 (2004)

    Article  Google Scholar 

  27. Oppacher, F., Wineberg, M.: The shifting balance genetic algorithm: Improving the GA in a dynamic environment. In: Proc. 1999 Genetic and Evol. Comput. Conf., vol. 1, pp. 504–510 (1999)

    Google Scholar 

  28. O’Reilly, U.M., Oppacher, F.: Program search with a hierarchical variable length representation: Genetic programming, simulated annealing and hill climbing. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 397–406. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  29. O’Reilly, U.M., Oppacher, F.: Hybridized crossover-based search techniques for program discovery. In: Proc. 1995 IEEE Int. Conf. Evol. Comput., pp. 573–578 (1995)

    Google Scholar 

  30. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

    Article  Google Scholar 

  31. Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: Prediction using linear regression and markov chains. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Simões, A., Costa, E.: Improving prediction in evolutionary algorithms for dynamic environments. In: Proc. 2009 Genetic and Evol. Comput. Conf., pp. 875–882 (2009)

    Google Scholar 

  33. Smith, J.E.: Coevolving memetic algorithms: A review and progress report. IEEE Trans. Syst., Man and Cybern.-Part B: Cybern. 37(1), 6–17 (2007)

    Article  Google Scholar 

  34. Talbi, E.G., Bachelet, V.: Cosearch: A parallel cooperative metaheuristic. J. of Mathematical Modelling and Algorithms 5(1), 5–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tang, J., Lim, M.H., Ong, Y.S.: Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput. 11(10), 957–971 (2007)

    Article  Google Scholar 

  36. Tang, M., Yao, X.: A memetic algorithm for VLSI floor planning. IEEE Trans. Syst., Man and Cybern.-Part B: Cybern. 37(1), 62–69 (2007)

    Article  Google Scholar 

  37. Uyar, A.S., Harmanci, A.E.: A new population based adaptive dominance change mechanism for diploid genetic algorithms in dynamic environments. Soft Comput. 9(11), 803–815 (2005)

    Article  MATH  Google Scholar 

  38. Vavak, F., Fogarty, T.C., Jukes, K.: Adaptive combustion balancing in multiple burner boilers using a genetic algorithm with variable range of local search. In: Proc. 7th Int. Conf. on Genetic Algorithms, pp. 719–726 (1996)

    Google Scholar 

  39. Wang, H., Wang, D.: An improved primal-dual genetic algorithm for optimization in dynamic environments. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006, Part III. LNCS, vol. 4234, pp. 836–844. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  40. Wang, H., Wang, D., Yang, S.: Triggered memory-based swarm optimization in dynamic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 637–646. Springer, Heidelberg (2007)

    Google Scholar 

  41. William, E.H., Krasnogor, N., Smith, J.E. (eds.): Recent Advances in Memetic Algorithms. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  42. Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm. In: Proc. 2003 IEEE Congr. Evol. Comput., vol. 3, pp. 2246–2253 (2003)

    Google Scholar 

  43. Yang, S.: Associative memory scheme for genetic algorithms in dynamic environments. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 788–799. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  44. Yang, S.: Genetic algorithms with elitism-based immigrants for changing optimization problems. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 627–636. Springer, Heidelberg (2007)

    Google Scholar 

  45. Yang, S., Jiang, Y., Nguyen, T.T.: Metaheuristics for dynamic combinatorial optimization problems. IMA J. of Management Mathematics (2012), doi:10.1093/imaman/DPS021

    Google Scholar 

  46. Yang, S., Ong, Y.S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and Uncertain Environments. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  47. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

    Article  MATH  Google Scholar 

  48. Yang, S., Yao, X.: Population-based incremental learning with associative memory for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

    Article  Google Scholar 

  49. Zhou, Z., Ong, Y.S., Lim, M.H.: Memetic algorithm using multi-surrogates for computationally expensive optimization problems. Soft Comput. 11(9), 873–888 (2007)

    Article  Google Scholar 

  50. Zhu, Z., Ong, Y.S., Dash, M.: Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans. Syst., Man and Cybern.-Part B: Cybern. 37(1), 70–76 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Yang, S. (2013). Memetic Algorithms for Dynamic Optimization Problems. In: Yang, S., Yao, X. (eds) Evolutionary Computation for Dynamic Optimization Problems. Studies in Computational Intelligence, vol 490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38416-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38416-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38415-8

  • Online ISBN: 978-3-642-38416-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics