Advanced Planning in Vertically Integrated Wine Supply Chains

Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 490)


This chapter gives detailed insights into a project for transitioning a wine manufacturing company from a mostly spreadsheet driven business with isolated silo-operated planning units into one that makes use of integrated and optimised decision making by use of modern heuristics. We present a piece of the puzzle - the modelling of business entities and their silo operations and optimizations, and pave the path for a further holistic integration to obtain company-wide globally optimised decisions. We argue that the use of “Computational Intelligence” methods is essential to cater for dynamic, time-variant and non-linear constraints and solve today’s real-world problems exemplified by the given wine supply chain.


Supply Chain Supply Chain Management Time Block Supply Chain Network Advance Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackoff, R.L.: The future of operational research is past. J. Oper. Res. Soc. 30, 93–104 (1979)Google Scholar
  2. 2.
    Aikens, C.H.: Facility location models for distribution planning. Europ. J. Oper. Res. 22(3), 263–279 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Altiparmak, F., Gen, M., Lin, L., Paksoy, T.: A genetic algorithm approach for multi-objective optimization of supply chain networks. Comput. Ind. Eng. 51(1), 196–215 (2006)CrossRefGoogle Scholar
  4. 4.
    Boulton, R.B., Singleton, V.L., Bisson, L.F., Kunkee, R.E.: Principles and Practices of Winemaking. Springer (1998)Google Scholar
  5. 5.
    Caggiano, K.E., Jackson, P.L., Muckstadt, J.A., Rappold, J.A.: Optimizing Service Parts Inventory in a Multiechelon, Multi-Item Supply Chain with Time-Based Customer Service-Level Agreements. Oper. Res. 55(2), 303–318 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Caglar, D., Li, C.L., Simchi-Levi, D.: Two-echelon spare parts inventory system subject to a service constraint. IIE Transactions 36(7), 655–666 (2004)CrossRefGoogle Scholar
  7. 7.
    Chandra, P., Fisher, M.L.: Coordination of production and distribution planning. Europ. J. Oper. Res. 72(3), 503–517 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using genetic algorithms—i: representation. Comput. Ind. Eng. 30(4), 983–997 (1996)CrossRefGoogle Scholar
  9. 9.
    Clark, A.J., Scarf, H.: Optimal policies for a multi-echelon inventory problem. Manage. Sci. 50(12 suppl.), 1782–1790 (2004)CrossRefGoogle Scholar
  10. 10.
    Coit, D.W., Smith, A.E.: Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach. Comput. Oper. Res. 23(6), 515–526 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Davis, L.: Job shop scheduling with genetic algorithms. In: Proc. 1st Int. Conf. Genetic Algorithms, pp. 136–140 (1985)Google Scholar
  12. 12.
    Davis, L.: Embracing complexity. Toward a 21st century supply chain solution (2008), Web-resource
  13. 13.
    Hanssmann, F.: Optimal inventory location and control in production and distribution networks. Oper. Res. 7(4), 483–498 (1959)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Holthaus, O.: Scheduling in job shops with machine breakdowns: an experimental study. Comput. Ind. Eng. 36(1), 137–162 (1999)CrossRefGoogle Scholar
  15. 15.
    Jain, A.K., Elmaraghy, H.A.: Production scheduling/rescheduling in flexible manufacturing. Int. J. Prod. Res. 35(1), 281–309 (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Kutanoglu, E., Sabuncuoglu, I.: Routing-based reactive scheduling policies for machine failures in dynamic job shops. Int. J. Prod. Res. 39(14), 3141–3158 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Lambert, D.M.: Supply chain management: Implementation issues and research opportunities. Int. J. of Logistics Management 9, 1–20 (1998)CrossRefGoogle Scholar
  18. 18.
    Lee, C.Y., Choi, J.Y.: A genetic algorithm for job sequencing problems with distinct due dates and general early-tardy penalty weights. Comput. Oper. Res. 22(8), 857–869 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lee, H., Pinto, J.M., Grossmann, I.E., Park, S.: Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. Ind. Eng. Chem. Res. 35(5), 1630–1641 (1996)CrossRefGoogle Scholar
  20. 20.
    Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing and cutting stock problems. J. Oper. Res. Soc. 55(7), 705–716 (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    Liang, K.H., Yao, X., Newton, C., Hoffman, D.: A new evolutionary approach to cutting stock problems with and without contiguity. Comput. Oper. Res. 29(12), 1641–1659 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Martin, C.H., Dent, D.C., Eckhart, J.C.: Integrated production, distribution, and inventory planning at libbey-owens-ford. Interfaces 23(3), 68–78 (1993)CrossRefGoogle Scholar
  23. 23.
    Naso, D., Surico, M., Turchiano, B., Kaymak, U.: Genetic algorithms for supply-chain scheduling: A case study in the distribution of ready-mixed concrete. Europ. J. Oper. Res. 177(3), 2069–2099 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Oliver, R.K., Webber, M.D.: Supply-chain management: Logistics catches up with strategy. In: Logistics. Chapman and Hall (1982) (Reprint from Outlook)Google Scholar
  25. 25.
    Petrovic, D., Alejandra, D.: A fuzzy logic based production scheduling/rescheduling in the presence of uncertain disruptions. Fuzzy Sets and Systems 157(16), 2273–2285 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Potter, M.: The design and analysis of a computational model of cooperative coevolution. Ph.D. Thesis, George Mason University (1997)Google Scholar
  27. 27.
    Pyke, D.F., Cohen, M.A.: Performance characteristics of stochastic integrated production-distribution systems. Europ. J. Oper. Res. 68(1), 23–48 (1993)zbMATHCrossRefGoogle Scholar
  28. 28.
    Pyke, D.F., Cohen, M.A.: Multiproduct integrated production–distribution systems. Europ. J. Oper. Res. 74(1), 18–49 (1994)zbMATHCrossRefGoogle Scholar
  29. 29.
    Stadtler, H., Kilger, C.: Supply Chain Management and Advanced Planning. Springer (2008)Google Scholar
  30. 30.
    Thomas, D.J., Griffin, P.M.: Coordinated supply chain management. Europ. J. Oper. Res. 94(1), 1–15 (1996)zbMATHCrossRefGoogle Scholar
  31. 31.
    Toth, P., Vigo, D.: The Vehicle routing problem. Society for Industrial and Applied Mathematics (2001)Google Scholar
  32. 32.
    Van Laarhoven, P.J.M.: Job shop scheduling by simulated annealing. Oper. Res. 40, 113 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Vergara, F.E., Khouja, M., Michalewicz, Z.: An evolutionary algorithm for optimizing material flow in supply chains. Comput. Ind. Eng. 43(3), 407–421 (2002)CrossRefGoogle Scholar
  34. 34.
    Vidal, C.J., Goetschalckx, M.: Strategic production-distribution models: A critical review with emphasis on global supply chain models. Europ. J. Oper. Res. 98(1), 1–18 (1997)zbMATHCrossRefGoogle Scholar
  35. 35.
    Wong, H., Kranenburg, B., van Houtum, G., Cattrysse, D.: Efficient heuristics for two-echelon spare parts inventory systems with an aggregate mean waiting time constraint per local warehouse. OR Spectrum 29(4), 699–722 (2007)zbMATHCrossRefGoogle Scholar
  36. 36.
    Zhou, G., Min, H., Gen, M.: A genetic algorithm approach to the bi-criteria allocation of customers to warehouses. Int. J. Prod. Econ. 86(1), 35–45 (2003)CrossRefGoogle Scholar
  37. 37.
    Zielinski, K., Weitkemper, P., Laur, R., Kammeyer, K.D.: Parameter study for differential evolution using a power allocation problem including interference cancellation. In: Proc. 2006 IEEE Congr. Evol. Comput., pp. 1857–1864 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of AdelaideAdelaideAustralia
  2. 2.SolveIT Software, Pty Ltd.AdelaideAustralia
  3. 3.SolveIT Software, Pty Ltd.DocklandsAustralia
  4. 4.School of Computer ScienceRMIT UniversityMelbourneAustralia
  5. 5.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  6. 6.Polish-Japanese Institute of Information TechnologyWarsawPoland

Personalised recommendations