Dynamic Fitness Landscape Analysis

Part of the Studies in Computational Intelligence book series (SCI, volume 490)

Abstract

Solving optimization problems with time varying objective functions by methods of evolutionary computation can be grounded on the theoretical framework of dynamic fitness landscapes. In this chapter, we define such dynamic fitness landscapes and discuss their properties. To this end, analyzing tools for measuring topological and dynamical landscape properties are studied. Based on these landscape measures we obtain an approach for drawing conclusion regarding characteristic features of a given optimization problem. This may allow to address the question of how difficult the problem is for an evolutionary search, and what type of algorithm is most likely to solve it successfully. The methodology is illustrated using a well-known example, the moving peaks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba, E., Sarasola, B.: Measuring fitness degradation in dynamic optimization problems. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 572–581. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Altenberg, L.: Fitness distance correlation analysis: An instructive counterexample. In: Bäck, T. (ed.) Proc. 7th Int. Conf. on Genetic Algorithms, pp. 57–64. Morgan Kaufmann, San Francisco (1997)Google Scholar
  3. 3.
    Asselmeyer, T., Ebeling, W., Rosé, H.: Analytical and numerical investigations of evolutionary algorithms in continuous spaces. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 111–121. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Bosman, P.A.N., La Poutré, H.: Computationally intelligent online dynamic vehicle routing by explicit load prediction in an evolutionary algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 312–321. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. 1999 IEEE Congr. Evol. Comput., pp. 1875–1882. IEEE Press, Piscataway (1999)Google Scholar
  6. 6.
    Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  7. 7.
    Crutchfield, J.P., Kaneko, K.: Phenomenology of spatiotemporal chaos. In: Hao, B. (ed.) Directions in Chaos, vol. 1, pp. 272–353. World Scientific, Singapore (1987)CrossRefGoogle Scholar
  8. 8.
    Cruz, C., Gonzlez, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey on problems, methods and measures. Soft Comput. 15, 1427–1448 (2011)CrossRefGoogle Scholar
  9. 9.
    Deb, K., Goldberg, D.E.: Sufficient conditions for deceptive and easy binary functions. Ann. Math. Artif. Intell. 10, 385–408 (1994)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Eriksson, R., Olsson, B.: On the performance of evolutionary algorithms with life-time adaptation in dynamic fitness landscapes. In: Greenwood, G.W. (ed.) Proc. 2004 IEEE Congr. Evol. Comput., pp. 1293–1300. IEEE Press, Piscataway (2004)Google Scholar
  11. 11.
    He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in black-box optimization: classification, realizations and predictability. Evolut. Comput. 15, 435–443 (2007)Google Scholar
  12. 12.
    Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)MATHCrossRefGoogle Scholar
  13. 13.
    Holmes, P.J.: A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. London A 292, 419–448 (1979)MATHCrossRefGoogle Scholar
  14. 14.
    Hordijk, W.: A measure of landscapes. Evolut. Comput. 4, 335–360 (1996)CrossRefGoogle Scholar
  15. 15.
    Hordijk, W., Kauffman, S.A.: Correlation analysis of coupled fitness landscapes. Complexity 10, 42–49 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Horn, J., Goldberg, D.E., Deb, K.: Long path problems. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 149–158. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. 17.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – A survey. IEEE Trans. Evol. Comput. 9, 303–317 (2005)CrossRefGoogle Scholar
  18. 18.
    Jones, T.: Evolutionary algorithms, fitness landscape and search. PhD thesis, The University of New Mexico, Albuquerque (1995)Google Scholar
  19. 19.
    Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 177–208. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond. Springer, Heidelberg (2001)MATHCrossRefGoogle Scholar
  21. 21.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1999)Google Scholar
  22. 22.
    Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biology 128, 11–45 (1987)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kauffman, S.A.: The Origin of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York (1993)Google Scholar
  24. 24.
    Li, Y., Wilke, C.O.: Digital evolution in time–dependent fitness landscapes. Artificial Life 10, 123–134 (2004)CrossRefGoogle Scholar
  25. 25.
    Malan, K., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes using entropy. In: Tyrrell, A. (ed.) Proc. 2009 IEEE Congr. Evol. Comput., pp. 1440–1447. IEEE Press, Piscataway (2009)CrossRefGoogle Scholar
  26. 26.
    Mendes, R., Mohais, A.: DynDE: Differential Evolution for dynamic optimization problems. In: Corne, D. (ed.) Proc. 2005 IEEE Congr. Evol. Comput., pp. 2808–2815. IEEE Press, Piscataway (2005)CrossRefGoogle Scholar
  27. 27.
    Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evolut. Comput. 12, 303–325 (2004)CrossRefGoogle Scholar
  28. 28.
    Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments. Springer, Heidelberg (2004)MATHCrossRefGoogle Scholar
  29. 29.
    Morrison, R.W., De Jong, K.A.: A test problem generator for non–stationary environments. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. 1999 IEEE Congr. Evol. Comput., Piscataway, NJ, pp. 2047–2053 (1999)Google Scholar
  30. 30.
    Morrison, R.W., De Jong, K.A.: Triggered hypermutation revisited. In: Zalzala, A., et al. (eds.) Proc. 2000 IEEE Congr. Evol. Comput., pp. 1025–1032. IEEE Press, Piscataway (2000)Google Scholar
  31. 31.
    Nilsson, M., Snoad, N.: Error thresholds for quasi-species on dynamic fitness landscapes. Phys. Rev. Lett. 84, 191–194 (2000)CrossRefGoogle Scholar
  32. 32.
    Nilsson, M., Snoad, N.: Quasi-species evolution on dynamic fitness landscapes. In: Crutchfield, J.P., Schuster, P. (eds.) Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality and Function. Santa Fe Institute Studies in the Sciences of Complexity Series, pp. 275–290. Oxford University Press, New York (2002)Google Scholar
  33. 33.
    Nilsson, M., Snoad, N.: Optimal mutation rates in dynamic environments. Bull. Math. Biol. 64, 1033–1043 (2002)CrossRefGoogle Scholar
  34. 34.
    Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems. In: Tyrrell, A. (ed.) Proc. 2009 IEEE Congr. Evol. Comput., pp. 690–697. IEEE Press, Piscataway (2009)CrossRefGoogle Scholar
  35. 35.
    Richter, H.: Behavior of evolutionary algorithms in chaotically changing fitness landscapes. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 111–120. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  36. 36.
    Richter, H.: A study of dynamic severity in chaotic fitness landscapes. In: Corne, D. (ed.) Proc. 2005 IEEE Congr. Evol. Comput., pp. 2824–2831 (2005)Google Scholar
  37. 37.
    Richter, H.: Evolutionary optimization in spatio–temporal fitness landscapes. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1–10. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. 38.
    Richter, H.: Coupled map lattices as spatio-temporal fitness functions: Landscape measures and evolutionary optimization. Physica D237, 167–186 (2008)Google Scholar
  39. 39.
    Richter, H., Yang, S.: Memory based on abstraction for dynamic fitness functions. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 596–605. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  40. 40.
    Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic optimization problems. Soft Comput. 13, 1163–1173 (2009)MATHCrossRefGoogle Scholar
  41. 41.
    Richter, H.: Evolutionary optimization and dynamic fitness landscapes: From reaction–diffusion systems to chaotic CML. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 409–446. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  42. 42.
    Richter, H.: Memory design for constrained dynamic optimization problems. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–561. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  43. 43.
    Richter, H., Dietel, F.: Solving dynamic constrained optimization problems with asynchronous change pattern. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 334–343. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  44. 44.
    Rohlfshagen, P., Lehre, P.K., Yao, Y.: Dynamic evolutionary optimisation: An analysis of frequency and magnitude of change. In: Rothlauf, F. (ed.) Proc. 2009 Genetic and Evol. Comput. Conf., pp. 1713–1720. ACM, Seattle (2009)Google Scholar
  45. 45.
    Simões, A., Costa, E.: Variable-size memory evolutionary algorithm to deal with dynamic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 617–626. Springer, Heidelberg (2007)Google Scholar
  46. 46.
    Simões, A., Costa, E.: The influence of population and memory sizes on the evolutionary algorithm’s performance for dynamic environments. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 705–714. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  47. 47.
    Stadler, P.F.: Landscapes and their correlation functions. J. Math. Chem. 20, 1–45 (1996)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comm. Theor. Biol. 8, 389–431 (2003)CrossRefGoogle Scholar
  49. 49.
    Stanhope, S.A., Daida, J.M.: (1+1) Genetic algorithm fitness dynamics in a changing environment. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. 1999 IEEE Congr. Evol. Comput., pp. 1851–1858 (1999)Google Scholar
  50. 50.
    Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evolut. Comput. 10(1), 1–34 (2002)CrossRefGoogle Scholar
  51. 51.
    Tavares, J., Pereira, F.B., Costa, E.: Multidimensional knapsack problem: a fitness landscape analysis. IEEE Trans. Syst., Man, and Cyber. Part B: Cybern. 38, 604–616 (2008)CrossRefGoogle Scholar
  52. 52.
    Teo, J., Abbass, H.A.: An information–theoretic landscape analysis of neuro-controlled embodied organisms. Neural Comput. Appl. 13, 80–89 (2004)CrossRefGoogle Scholar
  53. 53.
    Tinós, R., Yang, S.: A self–organizing random immigrants genetic algorithm for dynamic optimization problems. Genetic Programming and Evolvable Machines 8, 255–286 (2007)CrossRefGoogle Scholar
  54. 54.
    van Hemert, J.I., La Poutré, J.A.: Dynamic routing problems with fruitful regions: Models and evolutionary computation. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 692–701. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  55. 55.
    Vassilev, V.K.: Information analysis of fitness landscapes. In: Husbands, P., Harvey, I. (eds.) Proc. 4th European Conf. on Artificial Life, pp. 116–124. MIT Press, Cambridge (1997)Google Scholar
  56. 56.
    Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)CrossRefGoogle Scholar
  57. 57.
    Weicker, K.: An analysis of dynamic severity and population size. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 159–168. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  58. 58.
    Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  59. 59.
    Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63, 325–336 (1990)MATHCrossRefGoogle Scholar
  60. 60.
    Wiles, J., Tonkes, B.: Hyperspace geography: Visualizing fitness landscapes beyond 4D. Artificial Life 12, 211–216 (2006)CrossRefGoogle Scholar
  61. 61.
    Wilke, C.O., Ronnewinkel, C., Martinetz, T.: Dynamic fitness landscapes in molecular evolution. Phys. Rep. 349, 395–446 (2001)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Proc. 6th Int. Congr. on Genetics, pp. 356–366 (1932)Google Scholar
  63. 63.
    Yang, S., Yao, X.: Experimental study on population–based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)MATHCrossRefGoogle Scholar
  64. 64.
    Yang, S., Ong, Y.S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and Uncertain Environments. Springer, Heidelberg (2007)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Measurement Technology and Control Engineering, Faculty of Electrical Engineering and Information TechnologyHTWK Leipzig University of Applied SciencesLeipzigGermany

Personalised recommendations