Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 490))

Abstract

Solving optimization problems with time varying objective functions by methods of evolutionary computation can be grounded on the theoretical framework of dynamic fitness landscapes. In this chapter, we define such dynamic fitness landscapes and discuss their properties. To this end, analyzing tools for measuring topological and dynamical landscape properties are studied. Based on these landscape measures we obtain an approach for drawing conclusion regarding characteristic features of a given optimization problem. This may allow to address the question of how difficult the problem is for an evolutionary search, and what type of algorithm is most likely to solve it successfully. The methodology is illustrated using a well-known example, the moving peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba, E., Sarasola, B.: Measuring fitness degradation in dynamic optimization problems. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 572–581. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Altenberg, L.: Fitness distance correlation analysis: An instructive counterexample. In: Bäck, T. (ed.) Proc. 7th Int. Conf. on Genetic Algorithms, pp. 57–64. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  3. Asselmeyer, T., Ebeling, W., Rosé, H.: Analytical and numerical investigations of evolutionary algorithms in continuous spaces. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 111–121. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  4. Bosman, P.A.N., La Poutré, H.: Computationally intelligent online dynamic vehicle routing by explicit load prediction in an evolutionary algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 312–321. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. 1999 IEEE Congr. Evol. Comput., pp. 1875–1882. IEEE Press, Piscataway (1999)

    Google Scholar 

  6. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  7. Crutchfield, J.P., Kaneko, K.: Phenomenology of spatiotemporal chaos. In: Hao, B. (ed.) Directions in Chaos, vol. 1, pp. 272–353. World Scientific, Singapore (1987)

    Chapter  Google Scholar 

  8. Cruz, C., Gonzlez, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey on problems, methods and measures. Soft Comput. 15, 1427–1448 (2011)

    Article  Google Scholar 

  9. Deb, K., Goldberg, D.E.: Sufficient conditions for deceptive and easy binary functions. Ann. Math. Artif. Intell. 10, 385–408 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eriksson, R., Olsson, B.: On the performance of evolutionary algorithms with life-time adaptation in dynamic fitness landscapes. In: Greenwood, G.W. (ed.) Proc. 2004 IEEE Congr. Evol. Comput., pp. 1293–1300. IEEE Press, Piscataway (2004)

    Google Scholar 

  11. He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in black-box optimization: classification, realizations and predictability. Evolut. Comput. 15, 435–443 (2007)

    Google Scholar 

  12. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)

    Article  MATH  Google Scholar 

  13. Holmes, P.J.: A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. London A 292, 419–448 (1979)

    Article  MATH  Google Scholar 

  14. Hordijk, W.: A measure of landscapes. Evolut. Comput. 4, 335–360 (1996)

    Article  Google Scholar 

  15. Hordijk, W., Kauffman, S.A.: Correlation analysis of coupled fitness landscapes. Complexity 10, 42–49 (2005)

    Article  MathSciNet  Google Scholar 

  16. Horn, J., Goldberg, D.E., Deb, K.: Long path problems. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 149–158. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  17. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – A survey. IEEE Trans. Evol. Comput. 9, 303–317 (2005)

    Article  Google Scholar 

  18. Jones, T.: Evolutionary algorithms, fitness landscape and search. PhD thesis, The University of New Mexico, Albuquerque (1995)

    Google Scholar 

  19. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 177–208. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  21. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  22. Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biology 128, 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  23. Kauffman, S.A.: The Origin of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  24. Li, Y., Wilke, C.O.: Digital evolution in time–dependent fitness landscapes. Artificial Life 10, 123–134 (2004)

    Article  Google Scholar 

  25. Malan, K., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes using entropy. In: Tyrrell, A. (ed.) Proc. 2009 IEEE Congr. Evol. Comput., pp. 1440–1447. IEEE Press, Piscataway (2009)

    Chapter  Google Scholar 

  26. Mendes, R., Mohais, A.: DynDE: Differential Evolution for dynamic optimization problems. In: Corne, D. (ed.) Proc. 2005 IEEE Congr. Evol. Comput., pp. 2808–2815. IEEE Press, Piscataway (2005)

    Chapter  Google Scholar 

  27. Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evolut. Comput. 12, 303–325 (2004)

    Article  Google Scholar 

  28. Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  29. Morrison, R.W., De Jong, K.A.: A test problem generator for non–stationary environments. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. 1999 IEEE Congr. Evol. Comput., Piscataway, NJ, pp. 2047–2053 (1999)

    Google Scholar 

  30. Morrison, R.W., De Jong, K.A.: Triggered hypermutation revisited. In: Zalzala, A., et al. (eds.) Proc. 2000 IEEE Congr. Evol. Comput., pp. 1025–1032. IEEE Press, Piscataway (2000)

    Google Scholar 

  31. Nilsson, M., Snoad, N.: Error thresholds for quasi-species on dynamic fitness landscapes. Phys. Rev. Lett. 84, 191–194 (2000)

    Article  Google Scholar 

  32. Nilsson, M., Snoad, N.: Quasi-species evolution on dynamic fitness landscapes. In: Crutchfield, J.P., Schuster, P. (eds.) Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality and Function. Santa Fe Institute Studies in the Sciences of Complexity Series, pp. 275–290. Oxford University Press, New York (2002)

    Google Scholar 

  33. Nilsson, M., Snoad, N.: Optimal mutation rates in dynamic environments. Bull. Math. Biol. 64, 1033–1043 (2002)

    Article  Google Scholar 

  34. Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems. In: Tyrrell, A. (ed.) Proc. 2009 IEEE Congr. Evol. Comput., pp. 690–697. IEEE Press, Piscataway (2009)

    Chapter  Google Scholar 

  35. Richter, H.: Behavior of evolutionary algorithms in chaotically changing fitness landscapes. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 111–120. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  36. Richter, H.: A study of dynamic severity in chaotic fitness landscapes. In: Corne, D. (ed.) Proc. 2005 IEEE Congr. Evol. Comput., pp. 2824–2831 (2005)

    Google Scholar 

  37. Richter, H.: Evolutionary optimization in spatio–temporal fitness landscapes. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1–10. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  38. Richter, H.: Coupled map lattices as spatio-temporal fitness functions: Landscape measures and evolutionary optimization. Physica D237, 167–186 (2008)

    Google Scholar 

  39. Richter, H., Yang, S.: Memory based on abstraction for dynamic fitness functions. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 596–605. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  40. Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic optimization problems. Soft Comput. 13, 1163–1173 (2009)

    Article  MATH  Google Scholar 

  41. Richter, H.: Evolutionary optimization and dynamic fitness landscapes: From reaction–diffusion systems to chaotic CML. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 409–446. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  42. Richter, H.: Memory design for constrained dynamic optimization problems. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–561. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  43. Richter, H., Dietel, F.: Solving dynamic constrained optimization problems with asynchronous change pattern. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 334–343. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  44. Rohlfshagen, P., Lehre, P.K., Yao, Y.: Dynamic evolutionary optimisation: An analysis of frequency and magnitude of change. In: Rothlauf, F. (ed.) Proc. 2009 Genetic and Evol. Comput. Conf., pp. 1713–1720. ACM, Seattle (2009)

    Google Scholar 

  45. Simões, A., Costa, E.: Variable-size memory evolutionary algorithm to deal with dynamic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 617–626. Springer, Heidelberg (2007)

    Google Scholar 

  46. Simões, A., Costa, E.: The influence of population and memory sizes on the evolutionary algorithm’s performance for dynamic environments. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 705–714. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  47. Stadler, P.F.: Landscapes and their correlation functions. J. Math. Chem. 20, 1–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comm. Theor. Biol. 8, 389–431 (2003)

    Article  Google Scholar 

  49. Stanhope, S.A., Daida, J.M.: (1+1) Genetic algorithm fitness dynamics in a changing environment. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. 1999 IEEE Congr. Evol. Comput., pp. 1851–1858 (1999)

    Google Scholar 

  50. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evolut. Comput. 10(1), 1–34 (2002)

    Article  Google Scholar 

  51. Tavares, J., Pereira, F.B., Costa, E.: Multidimensional knapsack problem: a fitness landscape analysis. IEEE Trans. Syst., Man, and Cyber. Part B: Cybern. 38, 604–616 (2008)

    Article  Google Scholar 

  52. Teo, J., Abbass, H.A.: An information–theoretic landscape analysis of neuro-controlled embodied organisms. Neural Comput. Appl. 13, 80–89 (2004)

    Article  Google Scholar 

  53. Tinós, R., Yang, S.: A self–organizing random immigrants genetic algorithm for dynamic optimization problems. Genetic Programming and Evolvable Machines 8, 255–286 (2007)

    Article  Google Scholar 

  54. van Hemert, J.I., La Poutré, J.A.: Dynamic routing problems with fruitful regions: Models and evolutionary computation. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 692–701. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  55. Vassilev, V.K.: Information analysis of fitness landscapes. In: Husbands, P., Harvey, I. (eds.) Proc. 4th European Conf. on Artificial Life, pp. 116–124. MIT Press, Cambridge (1997)

    Google Scholar 

  56. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)

    Article  Google Scholar 

  57. Weicker, K.: An analysis of dynamic severity and population size. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 159–168. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  58. Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  59. Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63, 325–336 (1990)

    Article  MATH  Google Scholar 

  60. Wiles, J., Tonkes, B.: Hyperspace geography: Visualizing fitness landscapes beyond 4D. Artificial Life 12, 211–216 (2006)

    Article  Google Scholar 

  61. Wilke, C.O., Ronnewinkel, C., Martinetz, T.: Dynamic fitness landscapes in molecular evolution. Phys. Rep. 349, 395–446 (2001)

    Article  MathSciNet  Google Scholar 

  62. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Proc. 6th Int. Congr. on Genetics, pp. 356–366 (1932)

    Google Scholar 

  63. Yang, S., Yao, X.: Experimental study on population–based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

    Article  MATH  Google Scholar 

  64. Yang, S., Ong, Y.S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and Uncertain Environments. Springer, Heidelberg (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richter, H. (2013). Dynamic Fitness Landscape Analysis. In: Yang, S., Yao, X. (eds) Evolutionary Computation for Dynamic Optimization Problems. Studies in Computational Intelligence, vol 490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38416-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38416-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38415-8

  • Online ISBN: 978-3-642-38416-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics