Advertisement

Analyzing Evolutionary Algorithms for Dynamic Optimization Problems Based on the Dynamical Systems Approach

  • Renato Tinós
  • Shengxiang Yang
Part of the Studies in Computational Intelligence book series (SCI, volume 490)

Abstract

The study of evolutionary algorithms for dynamic optimization problems (DOPs) has attracted a rapidly growing interest in recent years. However, few work has addressed the theory in this domain. In this chapter, we use the exact model (or dynamical systems approach) to describe the standard genetic algorithm as a discrete dynamical system for DOPs. Based on this dynamical system model, we define some properties and classes of DOPs and analyze some DOPs used by researchers in the dynamic evolutionary optimization area. The analysis of DOPs via the dynamical systems approach allows explaining some behaviors observed in experimental results. The theoretical analysis of the properties of well-known DOPs is important to understand the results obtained in experiments and to analyze the similarity of such problems to other DOPs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D., Beyer, H.-G.: Random dynamics optimum tracking with evolution strategies. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 3–12. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  3. 3.
    Cob, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments. In: Forrest, S. (ed.) Proc. 5th Int. Conf. on Genetic Algorithms, pp. 523–530 (1993)Google Scholar
  4. 4.
    Cruz, C., González, J., Pelta, D.: Optimization in dynamic environments: a survey on problems, methods and measures. Soft Comput. 15(7) (2011) 1432–7643Google Scholar
  5. 5.
    Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Foundation of Genetic Algorithms, vol. 2, pp. 93–108 (1993)Google Scholar
  6. 6.
    Droste, S.: Analysis of the (1+ 1) EA for a dynamically changing onemax-variant. In: Proc. 2002 IEEE Congr. Evol. Comput., pp. 55–60 (2002)Google Scholar
  7. 7.
    Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. J. of Physical Chemistry 92(24), 6881–6891 (1988)CrossRefGoogle Scholar
  8. 8.
    Hayes, C., Gedeon, T.: Hyperbolicity of the fixed point set for the simple genetic algorithm. Theoretical Computer Science 411(25), 2368–2383 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRefGoogle Scholar
  10. 10.
    Morrison, R.W.: Designing evolutionary algorithms for dynamic environments. Springer-Verlag New York Inc. (2004)Google Scholar
  11. 11.
    Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the state of the art. Swarm and Evol. Comput. 6, 1–24 (2012)CrossRefGoogle Scholar
  12. 12.
    Noble, B., Daniel, J.W.: Applied Linear Algebra. Prentice-Hall (1977)Google Scholar
  13. 13.
    Reeves, C.R., Rowe, J.E.: Genetic Algorithms - Principles and Perspectives: A Guide to GA Theory. Kluwer Academic Publishers (2003)Google Scholar
  14. 14.
    Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimization: an analysis of frequency and magnitude of change. In: Proc. 2009 Genetic and Evol. Comput. Conf., pp. 1713–1720 (2009)Google Scholar
  15. 15.
    Rohlfshagen, P., Yao, X.: The dynamic knapsack problem revisited: A new benchmark problem for dynamic combinatorial optimisation. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 745–754. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Rowe, J.E.: Finding attractors for periodic fitness functions. In: Proc. 1999 Genetic and Evol. Comput. Conf., pp. 557–563 (1999)Google Scholar
  17. 17.
    Rowe, J.E.: Cyclic attractors and quasispecies adaptability. In: Kellel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 251–259. Springer (2001)Google Scholar
  18. 18.
    Ronnewinkel, C., Wilke, C.O., Martinetz, T.: Genetic algorithms in time-dependent environments. In: Kellel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 263–288. Springer (2001)Google Scholar
  19. 19.
    Tinós, R., Yang, S.: Continuous dynamic problem generators for evolutionary algorithms. In: Proc. 2007 IEEE Congr. Evol. Comput., pp. 236–243 (2007)Google Scholar
  20. 20.
    Tinós, R., Yang, S.: An analysis of the xor dynamic problem generator based on the dynamical system. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI, Part I. LNCS, vol. 6238, pp. 274–283. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Van Nimwegen, E., Crutchfield, J.P., Mitchell, M.: Finite populations induce metastability in evolutionary search. Physics Letters A 229(3), 144–150 (1997)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT Press (1999)Google Scholar
  23. 23.
    Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm. In: Proc. 2003 IEEE Congr. Evol. Comput., vol. 3, pp. 2246–2253 (2003)Google Scholar
  24. 24.
    Yang, S.: Constructing dynamic test environments for genetic algorithms based on problem difficulty. In: Proc. 2004 IEEE Congr. Evol. Comput., vol. 2, pp. 1262–1269 (2004)Google Scholar
  25. 25.
    Yang, S., Jiang, Y., Nguyen, T.T.: Metaheuristics for dynamic combinatorial optimization problems. IMA J. of Management Mathematics (2012), doi:10.1093/imaman/DPS021Google Scholar
  26. 26.
    Yang, S., Tinós, R.: A hybrid immigrants scheme for genetic algorithms in dynamic environments. Int. J. of Autom. and Comput. 4(3), 243–254 (2007)CrossRefGoogle Scholar
  27. 27.
    Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computing and MathematicsFFCLRP, University of São PauloRibeirão PretoBrazil
  2. 2.Centre for Computational Intelligence (CCI), School of Computer Science and InformaticsDe Montfort UniversityLeicesterU.K.

Personalised recommendations