Abstract
Analyzing user patterns in school information systems can be difficult as several methods (e.g. interviews, surveys, and observations) can be time-consuming. We propose logfile analysis as a method that offers several advantages, primarily non-reactive data capture. With logfiles from a school with over 100 teachers over a seven month period, we try to get a deeper insight about the system’s usage and the interactions between users. The results show that three user groups can be identified, classified by the intensity of usage. Network graphs helped us to visualize a complex system and helped us to identify important subjects and categories. Nevertheless, logfiles alone lack in providing information giving deeper insights about uses of the system like user goals and aims.
Chapter PDF
Similar content being viewed by others
References
Breiter, A., Lange, A., Stauke, E. (eds.): School Information Systems and Data-based Decision-Making. Schulinformationssysteme und datengestützte Entscheidungsprozesse. Peter Lang, Frankfurt-am-Main (2008)
Hew, K.F., Brush, T.: Integrating Technology into K-12 Teaching and Learning: Current Knowledge Gaps and Recommendations for Future Research. Educational Technology Research and Development 55(3), 223–252 (2007)
Pelgrum, W.J.: Obstacles to the integration of ICT in education: results from a worldwide educational assessment. Computers & Education 37(2), 163–178 (2001)
Breiter, A., Welling, S., Schulz, A.H.: Mediatisierung schulischer Organisationskulturen. In: Hepp, A., Krotz, F. (eds.) Mediatisierte Welten: Beschreibungsansätze und Forschungsfelder, pp. 96–117. VS Verlag, Wiesbaden (2011)
Schulz, W.: Reconstructing Mediatization as an Analytical Concept. European Journal of Communication 19(1), 87–101 (2004)
Oliner, A., Ganapathi, A., Xu, W.: Advances and challenges in log analysis. Communications of the ACM 55(2), 55–61 (2012)
Suneetha, K.R., Krishnamoorthi, R.: Identifying User Behavior by Analyzing Web Server Access Log File. IJCSNS International Journal of Computer Science and Network Security 9(4), 327–332 (2009)
Markov, Z., Larose, D.T.: Data mining the web: uncovering patterns in web content, structure and usage. Wiley, Hoboken (2007)
Büchner, A.G., Mulvenna, M.D.: Discovering Internet Marketing Intelligence through Online Analytical Web Usage Mining. ACM SIGMOD Record 27(4), 54–61 (1998)
Song, Q., Shepperd, M.: Mining web browsing patterns for E-commerce. Computers in Industry 57(7), 622–630 (2006)
Larose, D.T.: Data Mining Methods and Models. Wiley-IEEE Press, Hoboken (2006)
Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on Web usage mining. Communications of the ACM 43, 142–151 (2000)
Zaïane, O.R., Srivastava, J., Spiliopoulou, M., Masand, B. (eds.): WebKDD 2003. LNCS (LNAI), vol. 2703. Springer, Heidelberg (2003)
Cooley, R., Mobasher, B., Srivastava, J.: Web Mining: Information and Pattern Discovery on the World Wide Web. In: IEEE International Conference on Tools with Artificial Intelligence, p. 558, IEEE Computer Society (1997)
Huang, X., An, A., Liu, Y.: Web Usage Mining with Web Logs. In: Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining, 2nd edn., pp. 2096–2102. Information Science Reference, Hershey (2008)
Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: discovery and applications of usage patterns from Web data. SIGKDD Explor. Newsl. 1(2), 12–23 (2000)
Liu, B.: Web data mining: exploring hyperlinks, contents, and usage data. Springer, Berlin (2011)
Mobasher, B.: Web Mining Overview. In: Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining, 2nd edn., pp. 2085–2089. Information Science Reference, Hershey (2008)
Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer Interaction. Wiley, Chichester (2010)
Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, pp. 3–14 (1995)
Banerjee, A., Ghosh, J.: Clickstream Clustering using Weighted Longest Common Subsequences. In: Proceedings of the Web Mining Workshop at the 1st SIAM Conference on Data Mining (2001)
Chen, J., Cook, T.: Mining contiguous sequential patterns from web logs. In: Proceedings of the 16th International Conference on World Wide Web, pp. 1177–1178. ACM (2007)
Hay, B., Wets, G., Vanhoof, K.: Mining navigation patterns using a sequence alignment method. Knowledge and Information Systems 6(2), 150–163 (2004)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovering frequent episodes in sequences (Extended Abstract). In: 1st Conference on Knowledge Discovery and Data Mining, pp. 210–215 (1995)
van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering Social Networks from Event Logs. Computer Supported Cooperative Work 14(6), 549–593 (2005)
Hogan, B.: Analyzing Social Networks via the Internet. In: Fielding, N., Lee, R.M., Blank, G. (eds.) The SAGE Handbook of Online Research Methods, pp. 141–160. SAGE, Los Angeles (2008)
Wasserman, S., Faust, K.: Social network analysis: methods and applications. Cambridge University Press, Cambridge (1994)
Catledge, L.D., Pitkow, J.E.: Characterizing browsing strategies in the World-Wide web. Computer Networks and ISDN Systems 27(6), 1065–1073 (1995)
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software: Practice and Experience 21(11), 1129–1164 (1991)
Twisk, J.W.R.: Applied Multilevel Analysis. Cambridge University Press, Cambridge (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 IFIP International Federation for Information Processing
About this paper
Cite this paper
Schulz, A.H., Breiter, A. (2013). Monitoring User Patterns in School Information Systems Using Logfile Analysis. In: Passey, D., Breiter, A., Visscher, A. (eds) Next Generation of Information Technology in Educational Management. ITEM 2012. IFIP Advances in Information and Communication Technology, vol 400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38411-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-38411-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38410-3
Online ISBN: 978-3-642-38411-0
eBook Packages: Computer ScienceComputer Science (R0)