Skip to main content

Epigenetic Modifications Mediated by the AML1/ETO and MLL Leukemia Fusion Proteins

  • Chapter
  • First Online:
Book cover Epigenetic Therapy of Cancer

Abstract

AML1/ETO and MLL fusion proteins are among the most common chimeric transcription factors created by chromosomal translocations in acute myeloid leukemia (AML) whose pathogenic roles involve perturbations of epigenetic mechanisms of gene regulation. AML1/ETO is caused by the t(8;21) translocation and is present in approximately 12–15 % of AMLs. It acts as an epigenetic modifier by aberrantly recruiting histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) to target promoters and repressing the expression of its subordinate genes. AML1/ETO-induced epigenetic modifications may be reversed by both HDAC and DNMT inhibitors, restoring the expression of inappropriately silenced genes. Diverse MLL fusion proteins are created by a remarkable variety of translocations involving chromosome band 11q23 in approximately 10 % of AMLs. MLL fusion proteins promote constitutive expression of target genes through various mechanisms involving aberrant recruitment of transcriptional elongation factors (P-TEFb, ELL), chromatin-modifying acetyltransferases (CBP, P300), or histone methyltransferases (DOT1L, PRMT1). Selective targeted inhibition of MLL-associated factors that write or read the histone modifications in chromatin of MLL target genes displays promising efficacy in preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E, Casciari C, Sciurpi MT, Mariano AR, Minardi SP, Luzi L, Muller H, Di Fiore PP, Frosina G, Pelicci PG (2003) Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 112(11):1751–1761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez S, Suela J, Valencia A, Fernández A, Wunderlich M, Agirre X, Prósper F, Martín-Subero JI, Maiques A, Acquadro F, Rodriguez Perales S, Calasanz MJ, Roman-Gómez J, Siebert R, Mulloy JC, Cervera J, Sanz MA, Esteller M, Cigudosa JC (2010) DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PLoS One 5(8):e12197

    PubMed Central  PubMed  Google Scholar 

  • Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N, Downing JR, Meyers S, Hiebert SW (2001) ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 21(19):6470–6483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnold CP, Tan R, Zhou B, Yue SB, Schaffert S, Biggs JR, Doyonnas R, Lo MC, Perry JM, Renault VM, Sacco A, Somervaille T, Viatour P, Brunet A, Cleary ML, Li L, Sage J, Zhang DE, Blau HM, Chen C, Chen CZ (2011) MicroRNA programs in normal and aberrant stem and progenitor cells. Genome Res 21(5):798–810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ayton PM, Cleary ML (2001) Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20(40):5695–5707

    CAS  PubMed  Google Scholar 

  • Ayton PM, Cleary ML (2003) Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 17(18):2298–2307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ayton PM, Chen EH, Cleary ML (2004) Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol 24(23):10470–10478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbetti V, Gozzini A, Rovida E, Morandi A, Spinelli E, Fossati G, Mascagni P, Lübbert M, Dello Sbarba P, Santini V (2008) Selective anti-leukaemic activity of low-dose histone deacetylase inhibitor ITF2357 on AML1/ETO-positive cells. Oncogene 27(12):1767–1778

    CAS  PubMed  Google Scholar 

  • Becker H, Pfeifer D, Afonso JD, Nimer SD, Veelken H, Schwabe M, Lübbert M (2008) Two cell lines of t(8;21) acute myeloid leukemia with activating c-KIT exon 17 mutation: models for the “second hit” hypothesis. Leukemia 22(9):1792–1794

    CAS  PubMed  Google Scholar 

  • Berg T, Guo Y, Abdelkarim M, Fliegauf M, Lübbert M (2007) Reversal of p15/INK4b hypermethylation in AML1/ETO-positive and -negative myeloid leukemia cell lines. Leuk Res 31(4):497–506

    CAS  PubMed  Google Scholar 

  • Berg T, Fliegauf M, Burger J, Staege MS, Liu S, Martinez N, Heidenreich O, Burdach S, Haferlach T, Werner MH, Lübbert M (2008) Transcriptional upregulation of p21/WAF/Cip1 in myeloid leukemic blasts expressing AML1-ETO. Haematologica 93(11):1728–1733

    CAS  PubMed  Google Scholar 

  • Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, Feng Z, Punt N, Daigle A, Bullinger L, Pollock RM, Richon VM, Kung AL, Armstrong SA (2011) MLL-rearranged leukemia is dependent on aberrant H3K79 methylztion by DOT1L. Cancer Cell 20(1):66–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birke M, Schreiner S, García-Cuéllar MP, Mahr K, Titgemeyer F, Slany RK (2002) The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 30(4):958–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bitoun E, Oliver PL, Davies KE (2007) The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 16(1):92–106

    CAS  PubMed  Google Scholar 

  • Bristow CA, Shore P (2003) Transcriptional regulation of the human MIP-1alpha promoter by RUNX1 and MOZ. Nucleic Acids Res 31(11):2735–2744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calabi F, Pannell R, Pavloska G (2001) Gene targeting reveals a crucial role for MTG8 in the gut. Mol Cell Biol 21(16):5658–5666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron S, Taylor DS, TePas EC, Speck NA, Mathey-Prevot B (1994) Identification of a critical regulatory site in the human interleukin-3 promoter by in vivo footprinting. Blood 83(10):2851–2859

    CAS  PubMed  Google Scholar 

  • Chang PY, Hom RA, Musselman CA, Zhu L, Kuo A, Gozani O, Kutateladze TG, Cleary ML (2010) Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J Mol Biol 400(2):137–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung N, Chan LC, Thompson A, Cleary ML, So CW (2007) Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 9(10):1208–1215

    CAS  PubMed  Google Scholar 

  • Chevalier N, Solari ML, Becker H, Pantic M, Gärtner F, Maul-Pavicic A, Hübner J, Wäsch R, Schmitt-Gräff A, Lübbert M (2010) Robust in vivo differentiation of t(8;21)-positive acute myeloid leukemia blasts to neutrophilic granulocytes induced by treatment with dasatinib. Leukemia 24(10):1779–1781

    CAS  PubMed  Google Scholar 

  • Cierpicki T, Risner LE, Grembecka J, Lukasik SM, Popovic R, Omonkowska M, Shultis DD, Zeleznik-Le NJ, Bushweller JH (2010) Structure of the MLL CXXC domain-DNA complex and its functional role in MLL-AF9 leukemia. Nat Struct Mol Biol 17(1):62–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claus R, Fliegauf M, Stock M, Duque AJ, Kolanczyc M, Lübbert M (2006) Inhibitors of DNA methylation and histone deacetylation independently relieve AML1/ETO-mediated lysozyme repression. J Leukoc Biol 80(6):1462–1472

    CAS  PubMed  Google Scholar 

  • Cleary ML (1991) Oncogenic conversion of transcription factors by chromosomal translocations. Cell 66(4):619–622

    CAS  PubMed  Google Scholar 

  • Cross SH, Meehan RR, Nan X, Bird A (1997) A component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nat Genet 16(3):256–259

    CAS  PubMed  Google Scholar 

  • Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1):53–65

    CAS  PubMed  Google Scholar 

  • Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJ, Kouzarides T (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370):529–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhanda RS, Lindberg SR, Olsson I (2008) The human SIN3B corepressor forms a nucleolar complex with leukemia-associated ETO homologues. BMC Mol Biol 9:8

    PubMed Central  PubMed  Google Scholar 

  • Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Löwenberg B, Bloomfield CD (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474

    PubMed  Google Scholar 

  • Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG (2005) Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121(6):873–885

    CAS  PubMed  Google Scholar 

  • Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG (2006) Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 13(8):713–719

    CAS  PubMed  Google Scholar 

  • Duque-Afonso J, Solari L, Essig A, Berg T, Pahl HL, Lübbert M (2011a) Regulation of the adaptor molecule LAT2, an in vivo target gene of RUNX1/RUNX1T1, during myeloid differentiation. Br J Haematol 153(5):612–622

    CAS  PubMed  Google Scholar 

  • Duque-Afonso J, Yalcin A, Berg T, Abdelkarim M, Heidenreich O, Lübbert M (2011b) The HDAC class I-specific inhibitor Entinostat (MS-275) effectively relieves epigenetic silencing of the LAT2 gene mediated by AML1/ETO. Oncogene 30(27):3062–3072

    CAS  PubMed  Google Scholar 

  • Erfurth FE, Popovic R, Grembecka J, Cierpicki T, Theisler C, Xia ZB, Stuart T, Diaz MO, Bushweller JH, Zeleznik-Le NJ (2008) MLL protects CpG clusters from methylation within the Hoxa9 gene, maintaining transcript expression. Proc Natl Acad Sci U S A 105(21):7517–7522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80:1825–1831

    CAS  PubMed  Google Scholar 

  • Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ (2001) MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 21(7):2249–2258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    CAS  PubMed  Google Scholar 

  • Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M, Zwaan CM, Kung AL, Armstrong SA (2009) HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113(11):2375–2385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5):819–831

    CAS  PubMed  Google Scholar 

  • Fazi F, Zardo G, Gelmetti V, Travaglini L, Ciolfi A, Di Croce L, Rosa A, Bozzoni I, Grignani F, Lo-Coco F, Pelicci PG, Nervi C (2007a) Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood 109(10):4432–4440

    CAS  PubMed  Google Scholar 

  • Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, Grignani F, Nervi C (2007b) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12(5):457–466

    CAS  PubMed  Google Scholar 

  • Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, Campagne F, Mazumdar M, Greally JM, Valk PJ, Löwenberg B, Delwel R, Melnick A (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17(1):13–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fliegauf M, Stock M, Berg T, Lübbert M (2004) Williams-Beuren syndrome critical region-5/non-T-cell activation linker: a novel target gene of AML1/ETO. Oncogene 23(56):9070–9081

    CAS  PubMed  Google Scholar 

  • Follows GA, Tagoh H, Lefevre P, Hodge D, Morgan GJ, Bonifer C (2003) Epigenetic consequences of AML1-ETO action at the human c-FMS locus. EMBO J 22(11):2798–2809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F, Croce CM, Brunetti E, Grignani F, Peschle C (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9(7):775–787

    CAS  PubMed  Google Scholar 

  • Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD (1995) The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 11(12):2667–2674

    CAS  PubMed  Google Scholar 

  • Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T (2000) DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 24(1):88–91

    CAS  PubMed  Google Scholar 

  • Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18(12):7185–7191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20(24):6969–6978

    PubMed Central  PubMed  Google Scholar 

  • Gozzini A, Santini V (2005) Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts. Ann Hematol 84(Suppl 1):54–60

    CAS  PubMed  Google Scholar 

  • Gozzini A, Rovida E, Dello Sbarba P, Galimberti S, Santini V (2003) Butyrates, as a single drug, induce histone acetylation and granulocytic maturation: possible selectivity on core binding factor-acute myeloid leukemia blasts. Cancer Res 63(24):8955–8961

    CAS  PubMed  Google Scholar 

  • Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM, Hartley T, Hess JL, Cierpicki T (2012) Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 8(3):277–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guenther MG, Jenner RG, Chevalier B, Nakamura T, Croce CM, Canaani E, Young RA (2005) Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci U S A 102(24):8603–8608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL, Croce CM, Nakamura T, Canaani E, Young RA (2008) Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 22(24):3403–3408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez MI, Siraj AK, Bhargava M, Ozbek U, Banavali S, Chaudhary MA, El Solh H, Bhatia K (2003) Concurrent methylation of multiple genes in childhood ALL: Correlation with phenotype and molecular subgroup. Leukemia 17(9):1845–1850

    CAS  PubMed  Google Scholar 

  • Hall PA, Russell SE (2004) The pathobiology of the septin gene family. J Pathol 204(4):489–505

    CAS  PubMed  Google Scholar 

  • Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y, Ciceri F, Blaser JG, Greystoke BF, Jordan AM, Miller CJ, Ogilvie DJ, Somervaille TC (2012) The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21(4):473–487

    CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    CAS  PubMed  Google Scholar 

  • Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ (1997) Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90(5):1799–1806

    CAS  PubMed  Google Scholar 

  • Hildebrand D, Tiefenbach J, Heinzel T, Grez M, Maurer AB (2001) Multiple regions of ETO cooperate in transcriptional repression. J Biol Chem 276(13):9889–9895

    CAS  PubMed  Google Scholar 

  • Hsieh JJ, Ernst P, Erdjument-Bromage H, Tempst P, Korsmeyer SJ (2003) Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 23(1):186–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y (2001) Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 20(4):723–733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang G, Zhang P, Hirai H, Elf S, Yan X, Chen Z, Koschmieder S, Okuno Y, Dayaram T, Growney JD, Shivdasani RA, Gilliland DG, Speck NA, Nimer SD, Tenen DG (2008) PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat Genet 40(1):51–60

    CAS  PubMed  Google Scholar 

  • Huang G, Zhao X, Wang L, Elf S, Xu H, Zhao X, Sashida G, Zhang Y, Liu Y, Lee J, Menendez S, Yang Y, Yan X, Zhang P, Tenen DG, Osato M, Hsieh JJ, Nimer SD (2011) The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood 118(25):6544–6552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hug BA, Lazar MA (2004) ETO interacting proteins. Oncogene 23(24):4270–4274

    CAS  PubMed  Google Scholar 

  • Huret JL, Dessen P, Bernheim A (2001) An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 15(6):987–989

    CAS  PubMed  Google Scholar 

  • Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, Ohki M, Hayashi Y (1997) Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 90(12):4699–4704

    CAS  PubMed  Google Scholar 

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191

    CAS  PubMed  Google Scholar 

  • Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P (2007) Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 1(3):324–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly LM, Gilliland DG (2002) Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 3:179–198

    CAS  PubMed  Google Scholar 

  • Kitabayashi I, Yokoyama A, Shimizu K, Ohki M (1998) Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J 17(11):2994–3004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klampfer L, Zhang J, Zelenetz AO, Uchida H, Nimer SD (1996) The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci U S A 93(24):14059–14064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klisovic MI, Maghraby EA, Parthun MR, Guimond M, Sklenar AR, Whitman SP, Chan KK, Murphy T, Anon J, Archer KJ, Rush LJ, Plass C, Grever MR, Byrd JC, Marcucci G (2003) Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia 17:350–358

    CAS  PubMed  Google Scholar 

  • Krivtsov AV, Armstrong SA (2007) MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7(11):823–833

    CAS  PubMed  Google Scholar 

  • Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442(7104):818–822

    CAS  PubMed  Google Scholar 

  • Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU, Xia X, Jesneck J, Bracken AP, Silverman LB, Kutok JL, Kung AL, Armstrong SA (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 14(5):355–368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G (1998) Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 17(13):3714–3725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar AR, Li Q, Hudson WA, Chen W, Sam T, Yao Q, Lund EA, Wu B, Kowal BJ, Kersey JH (2009) A role for MEIS1 in MLL-fusion gene leukemia. Blood 113(8):1756–1758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lasa A, Carnicer MJ, Aventin A, Estivill C, Brunet S, Sierra J, Nomdedéu JF (2004) MEIS 1 expression is downregulated through promoter hypermethylation in AML1-ETO acute myeloid leukemias. Leukemia 18:1231–1237

    CAS  PubMed  Google Scholar 

  • Lausen J, Liu S, Fliegauf M, Lübbert M, Werner MH (2006) ELA2 is regulated by hematopoietic transcription factors, but not repressed by AML1-ETO. Oncogene 25(9):1349–1357

    CAS  PubMed  Google Scholar 

  • Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, Chen P, Wang Y, Yan M, Qian Z, Neilly MB, Jin J, Zhang Y, Bohlander SK, Zhang DE, Larson RA, Le Beau MM, Thirman MJ, Golub TR, Rowley JD, Chen J (2008) Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A 105(40):15535–15540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liedtke M, Ayton PM, Somervaille TC, Smith KS, Cleary ML (2010) Self-association mediated by the Ras association 1 domain of AF6 activates the oncogenic potential of MLL-AF6. Blood 116(1):63–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L, Washburn MP, Conaway JW, Conaway RC, Shilatifard A (2010) AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 37(3):429–437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linggi B, Müller-Tidow C, van de Locht L, Hu M, Nip J, Serve H, Berdel WE, van der Reijden B, Quelle DE, Rowley JD, Cleveland J, Jansen JH, Pandolfi PP, Hiebert SW (2002) The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 8(7):743–750

    CAS  PubMed  Google Scholar 

  • Liu H, Chen B, Xiong H, Huang QH, Zhang QH, Wang ZG, Li BL, Chen Z, Chen SJ (2004) Functional contribution of EEN to leukemogenic transformation by MLL-EEN fusion protein. Oncogene 23(19):3385–3394

    CAS  PubMed  Google Scholar 

  • Liu S, Shen T, Huynh L, Klisovic MI, Rush LJ, Ford JL, Yu J, Becknell B, Li Y, Liu C, Vukosavljevic T, Whitman SP, Chang KS, Byrd JC, Perrotti D, Plass C, Marcucci G (2005) Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res 65(4):1277–1284

    CAS  PubMed  Google Scholar 

  • Liu Y, Cheney MD, Gaudet JJ, Chruszcz M, Lukasik SM, Sugiyama D, Lary J, Cole J, Dauter Z, Minor W, Speck NA, Bushweller JH (2006) The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell 9(4):249–260

    PubMed  Google Scholar 

  • Liu S, Klisovic RB, Vukosavljevic T, Yu J, Paschka P, Huynh L, Pang J, Neviani P, Liu Z, Blum W, Chan KK, Perrotti D, Marcucci G (2007) Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. J Pharmacol Exp Ther 321(3):953–960

    CAS  PubMed  Google Scholar 

  • Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK, Cheng EH, Hsieh JJ (2010) Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467(7313):343–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Löwenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341(14):1051–1062

    PubMed  Google Scholar 

  • Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408(6810):377–381

    CAS  PubMed  Google Scholar 

  • Lütterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR, Huynh KD, Bardwell VJ, Lavinsky RM, Rosenfeld MG, Glass C, Seto E, Hiebert SW (1998) ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 18(10):7176–7184

    PubMed Central  PubMed  Google Scholar 

  • Maiques-Diaz A, Chou FS, Wunderlich M, Gómez-López G, Jacinto FV, Rodriguez-Perales S, Larrayoz MJ, Calasanz MJ, Mulloy JC, Cigudosa JC, Alvarez S (2012) Chromatin modifications induced by the AML1-ETO fusion protein reversibly silence its genomic targets through AML1 and Sp1 binding motifs. Leukemia 26(6):1329–1337

    CAS  PubMed  Google Scholar 

  • Marcucci G, Mrózek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO, Mayer RJ, Pettenati MJ, Powell BL, Edwards CG, Sterling LJ, Vardiman JW, Schiffer CA, Carroll AJ, Larson RA, Bloomfield CD (2005) Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 23(24):5705–5717

    PubMed  Google Scholar 

  • McMahon KA, Hiew SY, Hadjur S, Veiga-Fernandes H, Menzel U, Price AJ, Kioussis D, Williams O, Brady HJ (2007) Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 1(3):338–345

    CAS  PubMed  Google Scholar 

  • Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, Schnittger S, Schoch C, Jansen MW, van Dongen JJ, den Boer ML, Pieters R, Ennas MG, Angelucci E, Koehl U, Greil J, Griesinger F, Zur Stadt U, Eckert C, Szczepański T, Niggli FK, Schäfer BW, Kempski H, Brady HJ, Zuna J, Trka J, Nigro LL, Biondi A, Delabesse E, Macintyre E, Stanulla M, Schrappe M, Haas OA, Burmeister T, Dingermann T, Klingebiel T, Marschalek R (2006) The MLL recombinome of acute leukemias. Leukemia 20(5):777–784

    CAS  PubMed  Google Scholar 

  • Meyers S, Downing JR, Hiebert SW (1993) Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13(10):6336–6345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD (2002) Hess JL MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10(5):1107–1117

    CAS  PubMed  Google Scholar 

  • Milne TA, Martin ME, Brock HW, Slany RK, Hess JL (2005) Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res 65(24):11367–11374

    CAS  PubMed  Google Scholar 

  • Milne TA, Kim J, Wang GG, Stadler SC, Basrur V, Whitcomb SJ, Wang Z, Ruthenburg AJ, Elenitoba-Johnson KS, Roeder RG, Allis CD (2010) Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell 38(6):853–863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M (1991) t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A 88(23):10431–10434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A, Zhou R, Nesvizhskii A, Chinnaiyan A, Hess JL, Slany RK (2007) A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110(13):4445–4454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Müller AM, Duque-Afonso J, Shizuru JA, Lübbert M (2008) Complementing mutations in Core Binding Factor (CBF) leukemias: mechanisms und therapeutical implications. Oncogene 27(44):5759–5773

    PubMed  Google Scholar 

  • Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA, Basrur V, Elenitoba-Johnson KS, Hess JL (2010) The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17(6):609–621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389

    CAS  PubMed  Google Scholar 

  • Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123

    CAS  PubMed  Google Scholar 

  • Nie Z, Yan Z, Chen EH, Sechi S, Ling C, Zhou S, Xue Y, Yang D, Murray D, Kanakubo E, Cleary ML, Wang W (2003) Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol Cell Biol 23(8):2942–2952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD (1994) PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 14(8):5558–5568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y (1993) PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci U S A 90(14):6859–6863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, Su L, Xu G, Zhang Y (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121(2):167–178

    CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84(2):321–330

    CAS  PubMed  Google Scholar 

  • Otto F, Lübbert M, Stock M (2003) Upstream and downstream targets of RUNX proteins. J Cell Biochem 89:9–18

    CAS  PubMed  Google Scholar 

  • Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G, Hiddemann W, Zhang DE, Tenen DG (2001) AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 7(4):444–451

    CAS  PubMed  Google Scholar 

  • Peterson LF, Yan M, Zhang DE (2007) The p21/Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO. Blood 109(10):4392–4398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, Rowley JD, Zeleznik-Le NJ (2009) Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113(14):3314–3322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ptasinska A, Assi SA, Mannari D, James SR, Williamson D, Dunne J, Hoogenkamp M, Wu M, Care M, McNeill H, Cauchy P, Cullen M, Tooze RM, Tenen DG, Young BD, Cockerill PN, Westhead DR, Heidenreich O, Bonifer C (2012) Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 26(8):1829–1841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman S, Sowa ME, Ottinger M, Smith JA, Shi Y, Harper JW, Howley PM (2011) The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol Cell Biol 31(13):2641–2652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schafer E, Irizarry R, Negi S, McIntyre E, Small D, Figueroa ME, Melnick A, Brown P (2010) Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 115(23):4798–4809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schichman SA, Caligiuri MA, Gu Y, Strout MP, Canaani E, Bloomfield CD, Croce CM (1994) ALL-1 partial duplication in acute leukemia. Proc Natl Acad Sci U S A 91(13):6236–6239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlenk RF, Benner A, Krauter J, Büchner T, Sauerland C, Ehninger G, Schaich M, Mohr B, Niederwieser D, Krahl R, Pasold R, Döhner K, Ganser A, Döhner H, Heil G (2004) Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 22(18):3741–3750

    CAS  PubMed  Google Scholar 

  • Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH, Broekhuis MJ, Peters TC, Pieters R, den Boer ML (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23(2):313–322

    CAS  PubMed  Google Scholar 

  • Secker-Walker LM, Moorman AV, Bain BJ, Mehta AB (1998) Secondary acute leukemia and myelodysplastic syndrome with 11q23 abnormalities. EU Concerted Action 11q23 Workshop. Leukemia 12(5):840–844

    CAS  PubMed  Google Scholar 

  • Serrano E, Carnicer MJ, Lasa A, Orantes V, Pena J, Brunet S, Aventín A, Sierra J, Nomdedéu JF (2008) Epigenetic-based treatments emphasize the biologic differences of core-binding factor acute myeloid leukemias. Leuk Res 32(6):944–953

    CAS  PubMed  Google Scholar 

  • Shimizu K, Kitabayashi I, Kamada N, Abe T, Maseki N, Suzukawa K, Ohki M (2000) AML1-MTG8 leukemic protein induces the expression of granulocyte colony-stimulating factor (G-CSF) receptor through the up-regulation of CCAAT/enhancer binding protein epsilon. Blood 96(1):288–296

    CAS  PubMed  Google Scholar 

  • Slany RK (2009) The molecular biology of mixed lineage leukemia. Haematologica 94(7):984–993

    CAS  PubMed Central  PubMed  Google Scholar 

  • So CW, Lin M, Ayton PM, Chen EH, Cleary ML (2003) Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 4(2):99–110

    CAS  PubMed  Google Scholar 

  • Southall SM, Wong PS, Odho Z, Roe SM, Wilson JR (2009) Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Mol Cell 33(2):181–191

    CAS  PubMed  Google Scholar 

  • Stam RW, den Boer ML, Passier MM, Janka-Schaub GE, Sallan SE, Armstrong SA, Pieters R (2006) Silencing of the tumor suppressor gene FHIT is highly characteristic for MLL gene rearranged infant acute lymphoblastic leukemia. Leukemia 20(2):264–271

    CAS  PubMed  Google Scholar 

  • Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG, de Menezes RX, Pieters R, Stam RW (2009) Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114(27):5490–5498

    CAS  PubMed  Google Scholar 

  • Stumpel DJ, Schotte D, Lange-Turenhout EA, Schneider P, Seslija L, de Menezes RX, Marquez VE, Pieters R, den Boer ML, Stam RW (2011) Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25(3):429–439

    CAS  PubMed  Google Scholar 

  • Super HJ, McCabe NR, Thirman MJ, Larson RA, Le Beau MM, Pedersen-Bjergaard J, Philip P, Diaz MO, Rowley JD (1993) Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 82(12):3705–3711

    CAS  PubMed  Google Scholar 

  • Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M, Ishii S, Ogata K (2001) Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 104(5):755–767

    CAS  PubMed  Google Scholar 

  • Taki T, Sako M, Tsuchida M, Hayashi Y (1997) The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 89(11):3945–3950

    CAS  PubMed  Google Scholar 

  • Tan J, Jones M, Koseki H, Nakayama M, Muntean AG, Maillard I, Hess JL (2011) CBX8, a Polycomb Group Protein, Is Essential for MLL-AF9-Induced Leukemogenesis. Cancer Cell 20(5):563–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thiel AT, Blessington P, Zou T, Feather D, Wu X, Yan J, Zhang H, Liu Z, Ernst P, Koretzky GA, Hua X (2010) MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17(2):148–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tkachuk DC, Kohler S, Cleary ML (1992) Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71(4):691–700

    CAS  PubMed  Google Scholar 

  • Uchida H, Zhang J, Nimer SD (1997) AML1A and AML1B can transactivate the human IL-3 promoter. J Immunol 158(5):2251–2258

    CAS  PubMed  Google Scholar 

  • Walker H, Smith FJ, Betts DR (1994) Cytogenetics in acute myeloid leukaemia. Blood Rev 8(1):30–36

    CAS  PubMed  Google Scholar 

  • Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw-Boris A, Binder M, Marín-Padilla M, Sharpe AH, Speck NA (1996) The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87(4):697–708

    CAS  PubMed  Google Scholar 

  • Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM (1998) ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A 95(18):10860–10865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Saunthararajah Y, Redner RL, Liu JM (1999) Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res 59(12):2766–2769

    CAS  PubMed  Google Scholar 

  • Wang Z, Song J, Milne TA, Wang GG, Li H, Allis CD, Patel DJ (2010) Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 141(7):1183–1194

    CAS  PubMed  Google Scholar 

  • Wang L, Gural A, Sun XJ, Zhao X, Perna F, Huang G, Hatlen MA, Vu L, Liu F, Xu H, Asai T, Xu H, Deblasio T, Menendez S, Voza F, Jiang Y, Cole PA, Zhang J, Melnick A, Roeder RG, Nimer SD (2011a) The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 333(6043):765–769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YY, Zhao LJ, Wu CF, Liu P, Shi L, Liang Y, Xiong SM, Mi JQ, Chen Z, Ren R, Chen SJ (2011b) C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 108(6):2450–2455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Y, Liu S, Lausen J, Woodrell C, Cho S, Biris N, Kobayashi N, Wei Y, Yokoyama S, Werner MH (2007) A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. Nat Struct Mol Biol 14(7):653–661

    CAS  PubMed  Google Scholar 

  • Whitman SP, Hackanson B, Liyanarachchi S, Liu S, Rush LJ, Maharry K, Margeson D, Davuluri R, Wen J, Witte T, Yu L, Liu C, Bloomfield CD, Marcucci G, Plass C, Caligiuri MA (2008) DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood 112(5):2013–2016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilop S, Fernandez AF, Jost E, Herman JG, Brümmendorf TH, Esteller M, Galm O (2011) Array-based DNA methylation profiling in acute myeloid leukaemia. Br J Haematol 155(1):65–72

    CAS  PubMed  Google Scholar 

  • Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML (2007) Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 21(21):2762–2774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C, Chen CZ, Cleary ML (2010) The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 70(9):3833–3842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121(6):859–872

    CAS  PubMed  Google Scholar 

  • Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ (2003) MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci U S A 100(14):8342–8347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yagi H, Deguchi K, Aono A, Tani Y, Kishimoto T, Komori T (1998) Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 92(1):108–117

    CAS  PubMed  Google Scholar 

  • Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y, Chen IM, Chen Z, Rowley JD, Willman CL, Zhang DE (2006) A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 12(8):945–949

    CAS  PubMed  Google Scholar 

  • Yang G, Khalaf W, van de Locht L et al (2005) Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol Cell Biol 25(14):5869–5879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang G, Thompson MA, Brandt SJ, Hiebert SW (2007) Histone deacetylase inhibitors induce the degradation of the t(8;21) fusion oncoprotein. Oncogene 26(1):91–101

    PubMed  Google Scholar 

  • Yano T, Nakamura T, Blechman J, Sorio C, Dang CV, Geiger B, Canaani E (1997) Nuclear punctate distribution of ALL-1 is conferred by distinct elements at the N terminus of the protein. Proc Natl Acad Sci U S A 94(14):7286–7291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596

    CAS  PubMed  Google Scholar 

  • Yokoyama A, Cleary ML (2008) Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14(1):36–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML (2005) The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123(2):207–218

    CAS  PubMed  Google Scholar 

  • Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML (2010) A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17(2):198–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ (1995) Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378(6556):505–508

    CAS  PubMed  Google Scholar 

  • Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ (1998) MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci U S A 95(18):10632–10636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeisig BB, Milne T, García-Cuéllar MP, Schreiner S, Martin ME, Fuchs U, Borkhardt A, Chanda SK, Walker J, Soden R, Hess JL, Slany RK (2004) Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 24(2):617–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeleznik-Le NJ, Harden AM, Rowley JD (1994) 11q23 translocations split the “AT-hook” cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci U S A 91(22):10610–10614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang DE, Fujioka K, Hetherington CJ, Shapiro LH, Chen HM, Look AT, Tenen DG (1994) Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol 14(12):8085–8095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Kalkum M, Yamamura S, Chait BT, Roeder RG (2004) E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 305(5688):1286–1289

    CAS  PubMed  Google Scholar 

  • Zhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S, Zhang J, Dunne R, Xiao A, Erdjument-Bromage H, Allis CD, Tempst P, Nimer SD (2008) Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 22(5):640–653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478(7370):524–528

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Heiko Becker and Leticia Solari for reviewing the manuscript and Norm Cyr for graphic design. J. Duque-Afonso was funded by a grant from LaCaixa-DAAD (ref. 314, A/05/29785), the Fellowship Program of the Department of Hematology/Oncology of the University of Freiburg, and is currently funded by the German Research Foundation (DFG, ref. DU 1287/2-1). M. Lübbert is supported by the DFG (SPP 1463 ref. LU 429/7-1 and CRC 992-C04 LU429/9-1). M. Cleary is supported by grants from the National Cancer Institute and Leukemia and Lymphoma Society. The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Cleary MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duque-Afonso, J., Lübbert, M., Cleary, M.L. (2014). Epigenetic Modifications Mediated by the AML1/ETO and MLL Leukemia Fusion Proteins. In: Lübbert, M., Jones, P. (eds) Epigenetic Therapy of Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38404-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38404-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38403-5

  • Online ISBN: 978-3-642-38404-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics