Making Web-Scale Semantic Reasoning More Service-Oriented: The Large Knowledge Collider

  • Alexey Cheptsov
  • Zhisheng Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7652)

Abstract

Reasoning is one of the essential application areas of the modern Semantic Web. Nowadays, the semantic reasoning algorithms are facing significant challenges when dealing with the emergence of the Internet-scale knowledge bases, comprising extremely large amounts of data. The traditional reasoning approaches have only been approved for small, closed, trustworthy, consistent, coherent and static data domains. As such, they are not well-suited to be applied in data-intensive applications aiming on the Internet scale. We introduce the Large Knowledge Collider as a platform solution that leverages the service-oriented approach to implement a new reasoning technique, capable of dealing with exploding volumes of the rapidly growing data universe, in order to be able to take advantages of the large-scale and on-demand elastic infrastructures such as high performance computing or cloud technology.

Keywords

Semantic Web Reasoning Big Data Distribution Parallelization Performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical owl-dl reasoner. Journal of Web Semantics, http://www.mindswap.org/papers/PelletJWS.pdf
  2. 2.
    McCarthy, P.: Introduction to Jena. IBM developerWorks, http://www.ibm.com/developerworks/xml/library/j-jena/
  3. 3.
    Fensel, D., van Harmelen, F.: Unifying Reasoning and Search to Web Scale. IEEE Internet Computing 11(2), 94–96 (2007)CrossRefGoogle Scholar
  4. 4.
    Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harmelen, F., Horrocks, I.: Enabling knowledge representation on the Web by extending RDF schema. In: Proceedings of the 10th International Conference on World Wide Web (WWW 2001), pp. 467–478. ACM (2001)Google Scholar
  5. 5.
    High Level Expert EU Group, Riding the wave - How Europe can gain from the rising tide of scientific data, Final report (October 2010), http://ec.europa.eu/information_society/newsroom/cf/document.cfm?action=display&doc_id=707
  6. 6.
    Thompson, B., Personick, M.: Large-scale mashups using RDF and bigdata. In: Semantic Technology Conference (2009)Google Scholar
  7. 7.
    Hustadt, U., Motik, B., Sattler, U.: Data Complexity of Reasoning in Very Expressive Description Logics. In: Proc. IJCAI 2005, Edinburgh, pp. 466–471 (2005)Google Scholar
  8. 8.
    McKendrick, J.: Size of the data universe: 1.2 zettabytes and growing fast. ZDNetGoogle Scholar
  9. 9.
    Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! Rreasoning upon rapidly changing information. IEEE Intelligent Systems 24(6), 83–89 (2009)CrossRefGoogle Scholar
  10. 10.
    Fensel, D., van Harmelen, F.: Unifying Reasoning and Search to Web Scale. IEEE Internet Computing 11(2), 95–96 (2007)CrossRefGoogle Scholar
  11. 11.
    Cheptsov, A., Assel, M.: Towards High Performance Semantic Web – Experience of the LarKC Project. Inside - Journal of Innovatives Supercomputing in Deutschland 9(1) (Spring 2011)Google Scholar
  12. 12.
    Huang, Z., van Harmelen, F., Teije, A.: Reasoning with inconsistent ontologies. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 454–459 (2005)Google Scholar
  13. 13.
    Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle, D., Schmitz, C., et al.: KAON - Towards a Large Scale Semantic Web. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 304–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Huang, Z.: Interleaving Reasoning and Selection with Semantic Data. In: Proceedings of the 4th International Workshop on Ontology Dynamics (IWOD 2010), ISWC 2010 Workshop (2010)Google Scholar
  15. 15.
    Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: An overview of workflow system features and capabilities. Future Generation Computer Systems 25(5) (2009)Google Scholar
  16. 16.
    Fensel, D., van Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Della Valle, E., Fischer, F., Huang, Z., Kiryakov, A., Lee, T., Schooler, L., Tresp, V., Wesner, S., Witbrock, M., Zhong, N.: Towards LarKC: A Platform for Web-Scale Reasoning. In: Proceedings of the 2008 IEEE international Conference on Semantic Computing ICSC, pp. 524–529. IEEE Computer Society (2008)Google Scholar
  17. 17.
    Assel, M., Cheptsov, A., Gallizo, G., Celino, I., Dell’Aglio, D., Bradeško, L., Witbrock, M., Della Valle, E.: Large knowledge collider: a service-oriented platform for large-scale semantic reasoning. In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics, WIMS 2011 (2011)Google Scholar
  18. 18.
    Assel, M., Cheptsov, A., Gallizo, G., Benkert, K., Tenschert, A.: Applying High Performance Computing Techniques for Advanced Semantic Reasoning. In: Cunningham, P., Cunningham, M. (eds.) eChallenges e-2010 Conference Proceedings. IIMC International Information Management Corporation (2010)Google Scholar
  19. 19.
    Roman, D., Bishop, B., Toma, I., Gallizo, G., Fortuna, B.: LarKC Plug-in Annotation Language. In: Proceedings of The First International Conferences on Advanced Service Computing – Service Computation 2009 (2009)Google Scholar
  20. 20.
    Celino, I., Dell’Aglio, D., Della Valle, E., Huang, Y., Lee, T., Kim, S., Tresp, V.: Towards BOTTARI: Using Stream Reasoning to Make Sense of Location-Based Micro-Posts. In: García-Castro, R., Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 80–87. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning with WebPIE: calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Johansson, M., Li, Y., Wakefield, J., Greenwood, M.A., Heitz, T., Roberts, I., Cunningham, H., Brennan, P., Roberts, A., Mckay, J.: Using Prior Information Attained From The Literature To Improve Rankin. In: Genome-Wide Association Studies (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexey Cheptsov
    • 1
  • Zhisheng Huang
    • 2
  1. 1.High-Performance Computing Center StuttgartStuttgartGermany
  2. 2.Free University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations