Abstract
In the starting paper on Formal Concept Analysis (see WILLE (1982)), it is claimed that the aim of this young discipline is to ”Restructure Lattice Theory”, using an approach which ”goes back to the origin of the lattice concept in the nineteenth-century attempts to formalize logic, where a fundamental step was a reduction of a concept to its ”extent”. We propose to make the reduction less abstract by retaining in some measure ”the intent” of a concept”.
This is a reprint of a paper that was originally published in Beiträge zur Begriffsanalyse, (B. Ganter, R. Wille and K.E. Wolff ed.), BI Wissenschaftsverlag, 1987, Mannheim
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
ARNAULT, A., NICOLE, P. : La logique ou l’art de penser, 1662 (ed. 5, 1683). Reprinted by Fromann, Stuttgart, 1965.
BARBUT, M. Note sur l’algebre des techniques d’analyse hi rarchique. Appendice de L’Analyse hi rarchique (B. Matalon), Gauthier-Villars, Paris 1965.
BARBUT, M., MONJARDET, B. Ordre et classification, T.2, Hachette, Paris, 1971.
BIRKHOFF, G. : Lattice theory, Amer. Math. Soc., Providence, (ed.3) 1967.
BOOLE, G. The Mathematical Analysis of Logic, being an essay towards a calculus of deductive reasoning 1847. Reprinted by Basil Blackwell, Oxford, 1951.
CARNAP, R. : Meaning and necessity : a study in Semantics and Modal Logic. The University of Chicago Press, Chicago, 1947.
CASTONGAY, C. : Meaning and existence in mathematics. Springer-Verlag, Wien, 1972.
CHOMSKY, N. Cartesian linguistics a chapter in the history of rationalist thought. Harper & Row, New-York, 1966. French transl. Le Seuil, Paris, 1969.
COUTURAT, L. : L’Alg bre de la Logique. Alcan, Paris, 1905. Reprinted by Blanchard, Paris, 1980.
DUQUENNE, V., GUIGUES, J.L. : Galois lattice revival, communication to the Third European Meeting of the Psychometric Society, Jouy en Josas, 7/1983.
GANTER, B. : Two Basic Algorithms in Concept Analysis. Preprint n°831, Technische Hochschule Darmstadt, Darmstadt, 1984.
GANTER, B., POGUNTKE, W., WILLE, R. : Finite sublattices of four-generated modular lattices, Algebra Universalis 12, 1981, 160-171.
GUIGUES, J.L., DUQUENNE, V. : Informative implications derived from a table of binary data. Preprint, Groupe Math. et Psycho!., Univ. Paris-v, Paris, 1984. French trans!.submitted to Math. Sci. hum.
GRÄTZER, G. : General Lattice Theory. Birkhauser, Basel-Stuttgart, 1978.
LUKASIEWICZ, J., TARSKI, A. : Untersuchungen- Uber den AussagenkalkUl, C.R. Soc. Lett., Varsovie, classe III, XXIII, 1939, 30-50. French transl. in (*).
QUINE, W.O. : From a logical point of view. Harvard Univ. Press, Cambridge, 1953, (ed.3, 1980).
RIGUET, J. : Relations binaires, fermetures, correspondances de Galois, Bull. Soc. Math., France, 76, 1948, 114-155.
TARSKI, A. Fundamentale Begriffe der Methodologie der Deducti ven Wissenschaften, Mh. Math. Phys., XXXVII, 1930, 361-404. French transl. in (*) .
TARSKI, A.(*) Logique, s mantique, metamathematique. Armand Colin, Paris, 1972.
WILLE, R. : Subdirekte Produkte vollstllndiger Verbllnde, J. reine angew. Math., 283/284, 1976, 53-70.
WILLE, R. : Aspects of finite lattices. In : Higher Combinatorics (M. Aigner ed.), Reidel, Dordrecht-Boston, 1977, 79-100.
WILLE, R. : Restructuring lattice theory : an approach based on hierarchies of concepts. In: Symp. Ordered Sets (I. Rivaled.), Reidel, Dordrecht-Boston, 1982, 445-470.
WILLE, R. : Subdirect decomposition of concept lattices, Algebra Universalis 17, 1983, 275-287.
WILLE, R. : Line diagrams of hierarchical concept systems, Int. Classif. 11, 1984, 77-86.
WILLE, R. : Subdirect product construction of concept lattices. Preprint n°885, Technische Hochschule Darmstadt, Darmstadt, 1985.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duquenne, V. (2013). Contextual Implications between Attributes and Some Representation Properties for Finite Lattices. In: Cellier, P., Distel, F., Ganter, B. (eds) Formal Concept Analysis. ICFCA 2013. Lecture Notes in Computer Science(), vol 7880. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38317-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-38317-5_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38316-8
Online ISBN: 978-3-642-38317-5
eBook Packages: Computer ScienceComputer Science (R0)