With the development of connected filters in the last decade, many algorithms have been proposed to compute the max-tree. Max-tree allows computation of the most advanced connected operators in a simple way. However, no exhaustive comparison of these algorithms has been proposed so far and the choice of an algorithm over another depends on many parameters. Since the need for fast algorithms is obvious for production code, we present an in depth comparison of five algorithms and some variations of them in a unique framework. Finally, a decision tree will be proposed to help the user choose the most appropriate algorithm according to their requirements.


Priority Queue Wall Clock Time Cache Coherence Level Compression Parent Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: Proc. of ICIP, vol. 41, pp. IV–41 (2007)Google Scholar
  2. 2.
    Carlinet, E., Géraud, T.: Appendix of the present paper (2013),
  3. 3.
    Hesselink, W.H.: Salembier’s min-tree algorithm turned into breadth first search. Information Processing Letters 88(5), 225–229 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Jones, R.: Connected filtering and segmentation using component trees. Computer Vision and Image Understanding 75(3), 215–228 (1999)CrossRefGoogle Scholar
  5. 5.
    Levillain, R., Géraud, T., Najman, L.: Why and how to design a generic and efficient image processing framework: The case of the Milena library. In: Proc. of ICIP, pp. 1941–1944 (2010),
  6. 6.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. IVC 22(10), 761–767 (2004)CrossRefGoogle Scholar
  7. 7.
    Matas, P., Dokládalová, E., Akil, M., Grandpierre, T., Najman, L., Poupa, M., Georgiev, V.: Parallel algorithm for concurrent computation of connected component tree. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 230–241. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Menotti, D., Najman, L., de Albuquerque Araújo, A.: 1D component tree in linear time and space and its application to gray-level image multithresholding. In: Proc. of Intl. Symp. on Math. Morphology, pp. 437–448 (2007)Google Scholar
  9. 9.
    Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. on Image Processing 9(5), 860–872 (2000)CrossRefGoogle Scholar
  10. 10.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  11. 11.
    Nistér, D., Stewénius, H.: Linear time maximally stable extremal regions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 183–196. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 990–1004 (2007)CrossRefGoogle Scholar
  13. 13.
    Perret, B., Lefevre, S., Collet, C., Slezak, É.: Connected component trees for multivariate image processing and applications in astronomy. In: Proc. of International Conference on Pattern Recognition, pp. 4089–4092 (2010)Google Scholar
  14. 14.
    Reinders, J.: Intel threading building blocks: outfitting C++ for multi-core processor parallelism. O’Reilly Media, Incorporated (2007)Google Scholar
  15. 15.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  16. 16.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. on Ima. Proc. 4(8), 1153–1160 (1995)CrossRefGoogle Scholar
  17. 17.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22(2), 215–225 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and grey-scale shape filters. In: Proc. of ISMM, pp. 305–314 (2002)Google Scholar
  19. 19.
    Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications. In: Proc. of EURASIP Workshop on Mathematical Morphology and its Applications to Signal Processing, pp. 22–27 (1993)Google Scholar
  20. 20.
    Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. on Image Processing 16(12), 2943–2952 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concurrent computation of attribute filters on shared memory parallel machines. IEEE Trans. on PAMI 30(10), 1800–1813 (2008)CrossRefGoogle Scholar
  22. 22.
    Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Wilkinson, M.H.F.: A fast component-tree algorithm for high dynamic-range images and second generation connectivity. In: ICIP, pp. 1021–1024 (2011)Google Scholar
  24. 24.
    Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: Applications using tree-based image representations. In: Proc. of International Conference on Pattern Recognition, pp. 1–4 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Edwin Carlinet
    • 1
  • Thierry Géraud
    • 1
  1. 1.EPITA Research and Development Laboratory (LRDE)France

Personalised recommendations