Estimation of Separating Planes between Touching 3D Objects Using Power Watershed

  • Clara Jaquet
  • Edward Andó
  • Gioacchino Viggiani
  • Hugues Talbot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7883)


The problem of separating touching or overlapping objects is classical in imaging. Many solutions have been proposed in 2D. While similar, the problem in 3D has differentiating features: apparent overlap due to projection effects does not exist, but real or apparent interpenetration can occur only due to either physical particle fusion or partial volume effects. Often the ability to separate objects logically is sufficient, however sometimes finding the orientation of tangent separating plane is useful. In this article, we propose a method based on power watershed for separating 3D touching objects and estimate a precise separating plane. Power watershed is used in two steps, first to obtain individual object identification, and in a second step to allow sub-voxel accuracy in the plane fitting procedure. We show that our approach is much more precise than a simple segmentation. We illustrate this in an application involving the shearing of a sample of sand grains imaged in various configurations by micro-CT tomography. Our technique measures the orientation of the contacts between grains, a quantity that is explicitly used in soil mechanics modeling, but which has up until now been difficult to measure from experiments.


Segmentation random walker orientations micro-tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Experimental micromechanics: grain-scale observation of sand deformation. Géotechnique Letters 2(3), 107–112 (2012b)CrossRefGoogle Scholar
  2. 2.
    Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotechnica, 1–13 (2012)Google Scholar
  3. 3.
    Beucher, S., Gratin, C.: Micromorph reference manual, applications and solutions. Ecole des Mines de Paris (1989)Google Scholar
  4. 4.
    Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: Int. Workshop on Image Processing, Rennes, France. CCETT/IRISA (September 1979)Google Scholar
  5. 5.
    Bloch, I.: Some aspects of dempster-shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account. Pattern Recognition Letters 17(8), 905–919 (1996)CrossRefGoogle Scholar
  6. 6.
    Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: A unifying graph-based optimization framework. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(7), 1384–1399 (2011)CrossRefGoogle Scholar
  7. 7.
    Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and euclidean skeleton in 2d and 3d. Image Vision Computing 25(10), 1543–1556 (2007)CrossRefGoogle Scholar
  8. 8.
    Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. Journal of Mathematical Imaging and Vision 22(2-3), 231–249 (2005); Special issue on Mathematical MorphologyGoogle Scholar
  9. 9.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: thinnings, shortest-path forests and topological watersheds. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(5), 925–939 (2010)CrossRefGoogle Scholar
  10. 10.
    Russ, J.C.: The image processing handbook, 3rd edn. CRC Press (1999)Google Scholar
  11. 11.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall (2007)Google Scholar
  12. 12.
    Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hinks, A.R.: Map Projections, 2nd rev. edn. Cambridge University Press, Cambridge (1921)Google Scholar
  14. 14.
    Meyer, F.: Automatic screening of cytological specimens. Computer Vision, Graphics, and Image Processing 35(3), 356–369 (1986)CrossRefGoogle Scholar
  15. 15.
    Meyer, F.: Un algorithme optimal de ligne de partage des eaux. In: Proc. 8ème Congrès Reconnaissance des Formes et Intelligence Artificielle, pp. 847–857. AFCET (November 1991)Google Scholar
  16. 16.
    Meyer, F., Beucher, S.: Morphological segmentation. Journal on Visual Communication and Image Representation 1(1), 21–46 (1990)CrossRefGoogle Scholar
  17. 17.
    Miles, R.E.: On the homogeneous planar poisson point process. Mathematical Biosciences 6, 85–127 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognition 1, 33–61 (1968)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Saito, T., Toriwaki, J.I.: New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern recognition 27(11), 1551–1565 (1994)CrossRefGoogle Scholar
  20. 20.
    Soille, P.: Morphological Image Analysis, principles and applications, 2nd edn. Springer (2003) ISBN 3-540-42988-3Google Scholar
  21. 21.
    Talbot, H., Appleton, B.: Elliptical distance transforms and the object splitting problem. In: Talbot, H., Beare, R. (eds.) Proceedings of the 6th International Symposium on Mathematical Morphology, pp. 229–240. CSIRO Publishing, Sydney (2002)Google Scholar
  22. 22.
    Talbot, H., Vincent, L.: Euclidean skeleton and conditional bisectors. In: Visual Communications and Image Processing 1992, vol. 1818, pp. 862–873. SPIE, Boston (1992)Google Scholar
  23. 23.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Transactions on Image Processing 2(2), 176–201 (1993)CrossRefGoogle Scholar
  24. 24.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Clara Jaquet
    • 1
  • Edward Andó
    • 2
  • Gioacchino Viggiani
    • 2
  • Hugues Talbot
    • 3
  1. 1.Institut Supérieur de BioSiencesUniversité Paris Est CréteilCréteilFrance
  2. 2.Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, ESIEEUniversité Paris-EstNoisy-le-GrandFrance
  3. 3.Grenoble-INP / UJF-Grenoble 1 / CNRS UMR 5521, Laboratoire 3SRGrenobleFrance

Personalised recommendations