In this paper we present a keypoint detector based on the bimodality of the histograms of oriented gradients (HOGs). We compute the bimodality of each HOG, and a bimodality image is constructed from the result of this bimodality test. The maxima with highest dynamics of the image obtained are selected as robust keypoints. The bimodality test of HOGs used is also based on dynamics. We compare the results obtained using this method with a set of well-known keypoint detectors.


dynamics test of bimodality keypoint detection histograms of oriented gradients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  2. 2.
    Beaudet, P.R.: Rotationally invariant image operators. In: Proceedings of the International Joint Conference on Pattern Recognition, vol. 579, pp. 579–583 (1978)Google Scholar
  3. 3.
    Bertrand, G.: On the dynamics. Image Vision Comput. 25(4), 447–454 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cataño, M.A., Climent, J.: Keypoint detection based on the unimodality test of hogs. In: Bebis, G., et al. (eds.) ISVC 2012, Part I. LNCS, vol. 7431, pp. 189–198. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Cataño, M.A., Climent, J.: A new morphological measure of histogram bimodality. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 390–397. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (June 2005)Google Scholar
  7. 7.
    DeCarlo, L.T.: On the meaning and use of kurtosis. Psychological Methods 2(3), 292–307 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grimaud, M.: New measure of contrast: the dynamics, vol. 1769, pp. 292–305. SPIE (1992)Google Scholar
  9. 9.
    Harris, C., Stephens, M.: A combined corner and edge detector, Manchester, UK, vol. 15, pp. 147–151 (1988)Google Scholar
  10. 10.
    Hartigan, J.A., Hartigan, P.M.: The dip test of unimodality. The Annals of Statistics 13(1), 70–84Google Scholar
  11. 11.
    Hellwig, B., Hengstler, J., Schmidt, M., Gehrmann, M., Schormann, W., Rahnenfuhrer, J.: Comparison of scores for bimodality of gene expression distributions and genome-wide evaluation of the prognostic relevance of high-scoring genes. BMC Bioinformatics (1), 276+Google Scholar
  12. 12.
    Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image Und. 75(3), 215–228 (1999)CrossRefGoogle Scholar
  13. 13.
    Juan, L., Gwun, O.: A comparison of sift, pca-sift and surf. Image Processing 3(4), 143–152 (2009)Google Scholar
  14. 14.
    Kadir, T., Brady, M.: Saliency, Scale and Image Description. International Journal of Computer Vision 45(2), 83–105 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different scales. J. of Applied Statistics 21(2), 224–270 (1994)Google Scholar
  16. 16.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30, 79–116Google Scholar
  17. 17.
    Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (August 1999)Google Scholar
  18. 18.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  19. 19.
    Mattes, J., Richard, M., Demongeot, J.: Tree representation for image matching and object recognition. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 298–312. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings. Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, pp. 525–531 (2001)Google Scholar
  21. 21.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  22. 22.
    Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 60, 63–86Google Scholar
  23. 23.
    Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Ph.D. thesis, Stanford, CA, USA, aAI8024717 (1980)Google Scholar
  24. 24.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE T. Image Process. 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  25. 25.
    Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 829–836 (2005)Google Scholar
  26. 26.
    Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  27. 27.
    Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 105–119 (2010)CrossRefGoogle Scholar
  28. 28.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE T. Image Process. 7(4), 555–570 (1998)CrossRefGoogle Scholar
  30. 30.
    Schmid, C., Mohr, R., Bauckhage, C.: Comparing and evaluating interest points. In: Sixth International Conference on Computer Vision, pp. 230–235 (January 1998)Google Scholar
  31. 31.
    Silva, A.G., de Alencar Lotufo, R.: Efficient computation of new extinction values from extended component tree. Pattern Recogn. Lett. 32(1), 79–90 (2011)CrossRefGoogle Scholar
  32. 32.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and Vision 3(3), 177–280 (2007)CrossRefGoogle Scholar
  33. 33.
    Vachier, C., Meyer, F.: Extinction value: a new measurement of persistence. In: IEEE Workshop on Nonlinear Signal and Image Processing, vol. 1, pp. 254–257 (1995)Google Scholar
  34. 34.
    Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE T. Pattern Anal. 13(6), 583–598 (1991)CrossRefGoogle Scholar
  35. 35.
    Wang, J., Wen, S., Symmans, W.F., Pusztai, L., Coombes, K.R.: The bimodality index: a criterion for discovering and ranking bimodal signatures from cancer gene expression profiling data. Cancer Informatics 7, 199–216 (2009)Google Scholar
  36. 36.
    Wolfe, J.H.: Pattern Clustering by Multivariate Mixture Analysis. Multivariate Behavioral Research 5, 329–350 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miguel Angel Cataño
    • 1
  • Juan Climent
    • 2
  1. 1.Pontificia Universidad Catolica del PeruPeru
  2. 2.Barcelona TechUniversitat Politecnica de CatalunyaSpain

Personalised recommendations