Skip to main content

Adaptive Morphologic Regularizations for Inverse Problems

  • Conference paper
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7883))

Abstract

Regularization is an well-known technique for obtaining stable solution of ill-posed inverse problems. In this paper we establish a key relationship among the regularization methods with edge-preserving noise filtering method which leads to an efficient adaptive regularization methods. We show experimentally the efficiency and superiority of the proposed regularization methods for some inverse problems, e.g. deblurring and super-resolution (SR) image reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. of Imaging Sciences 2, 183–202 (2006)

    Article  MathSciNet  Google Scholar 

  3. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  4. Purkait, P., Chanda, B.: Super resolution image reconstruction through bregman iteration using morphologic regularization. IEEE Transactions on Image Processing 21, 4029–4039 (2012)

    Article  MathSciNet  Google Scholar 

  5. Widrow, B., Stearns, S.: Adaptive signal processing, vol. 491, p. 1. Prentice-Hall, Inc., Englewood Cliffs (1985)

    MATH  Google Scholar 

  6. Zhang, X., Lam, E.Y., Wu, E.X., Wong, K.K.: Application of tikhonov regularization to super-resolution reconstruction of brain mri image. Medical Imaging and Informatics 49, 51–56 (2008)

    Article  Google Scholar 

  7. Hansen, P.C., Nagy, J.G., OLeary, D.P.: Deblurring images. Fundamentals of Algorithms, vol. 3, pp. 291–294. Society for Industrial and Applied Mathematics (SIAM) (2006)

    Google Scholar 

  8. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super-resolution. IEEE Transactions on Image Processing 13, 1327–1344 (2004)

    Article  Google Scholar 

  9. Chan, T.F., Wong, C.K.T.: Multichannel image deconvolution by total variation regularization. In: Proceedings of SPIE, San Diego, CA, USA, pp. 358–366 (1997)

    Google Scholar 

  10. Li, X., Hu, Y., Gao, X., Tao, D., Ning, B.: A multi-frame image super-resolution method. Signal Processing 90, 405–414 (2010)

    Article  MATH  Google Scholar 

  11. Nguyen, N., Milanfar, P., Golub, G.: Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Transactions on Image Processing 10, 1299–1308 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen, N., Milanfar, P., Golub, G.H.: A computationally efficient image super resolution algorithm. IEEE Transaction on Image Processing 10, 573–583 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elad, M., Feuer, A.: Restoration of a single super-resolution image from several blurred, noisy, and under-sampled measured images. IEEE Transactions on Image Processing 6, 1646–1658 (1997)

    Article  Google Scholar 

  14. Elad, M.: On the bilateral filter and ways to improve it. IEEE Transaction on Image Processing 11, 1141–1151 (2002)

    Article  MathSciNet  Google Scholar 

  15. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE International Conference on Computer Vision, New Delhi, India, pp. 836–846 (1998)

    Google Scholar 

  16. Lerallut, R., Decencière, E., Meyer, F.: Image filtering using morphological amoebas. Image and Vision Computing 25, 395–404 (2007)

    Google Scholar 

  17. Cheng, F., Venetsanopoulos, A.: Adaptive morphological operators, fast algorithms and their applications. Pattern Recognition 33, 917–933 (2000)

    Article  Google Scholar 

  18. Soille, P.: Generalized geodesy via geodesic time. Pattern Recognition Letters 15, 1235–1240 (1994)

    Article  Google Scholar 

  19. Debayle, J., Pinoli, J.C.: General adaptive neighborhood image processing. J. Math. Imaging Vis. 25, 267–284 (2006)

    Article  MathSciNet  Google Scholar 

  20. Borgefors, G.: Distance transformations in digital images. Comput. Vision Graph. Image Process. 34, 344–371 (1986)

    Article  Google Scholar 

  21. Sethian, J.A.: Fast marching methods. SIAM Review 41, 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Toivanen, J.P.: New geodosic distance transforms for gray-scale images. Pattern Recognition Letters 17, 437–450 (1996)

    Article  Google Scholar 

  23. Yatziv, L., Bartesaghi, A., Sapiro, G.: O(n) implementation of the fast marching algorithm. Journal of Computational Physics 212, 393–399 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Purkait, P., Chanda, B. (2013). Adaptive Morphologic Regularizations for Inverse Problems. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2013. Lecture Notes in Computer Science, vol 7883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38294-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38294-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38293-2

  • Online ISBN: 978-3-642-38294-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics