A Session-Based Approach for Aligning Large Ontologies

  • Patrick Lambrix
  • Rajaram Kaliyaperumal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)

Abstract

There are a number of challenges that need to be addressed when aligning large ontologies. Previous work has pointed out scalability and efficiency of matching techniques, matching with background knowledge, support for matcher selection, combination and tuning, and user involvement as major requirements. In this paper we address these challenges. Our first contribution is an ontology alignment framework that enables solutions to each of the challenges. This is achieved by introducing different kinds of interruptable sessions. The framework allows partial computations for generating mapping suggestions, partial validations of mappings suggestions and use of validation decisions in (re)computation of mapping suggestions and the recommendation of alignment strategies to use. Further, we describe an implemented system providing solutions to each of the challenges and show through experiments the advantages of the session-based approach.

References

  1. 1.
    Chen, B., Lambrix, P., Tan, H.: Structure-based filtering for ontology alignment. In: IEEE WETICE Workshop on Semantic Technologies in Collaborative Applications, pp. 364–369 (2006)Google Scholar
  2. 2.
    Do, H.-H., Rahm, E.: Matching large schemas: approaches and evaluation. Information Systems 32, 857–885 (2007)CrossRefGoogle Scholar
  3. 3.
    Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with APFEL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 186–200. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology alignment evaluation initiative: Six years of experience. In: Spaccapietra, S. (ed.) Journal on Data Semantics XV. LNCS, vol. 6720, pp. 158–192. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Euzenat, J., Schvaiko, P.: Ontology Matching. Springer (2007)Google Scholar
  6. 6.
    Falconer, S., Noy, N.: Interactive techniques to support ontology matching. In: Schema Matching and Mapping, pp. 29–52 (2011)Google Scholar
  7. 7.
    Falconer, S.M., Storey, M.-A.: A cognitive support framework for ontology mapping. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 114–127. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Jimenez-Ruiz, E., Cuenca-Grau, B., Zhou, Y., Horrocks, I.: Large-scale interactive ontology matching: Algorithms and implementation. In: 20th European Conference on Artificial Intelligence, pp. 444–449 (2012)Google Scholar
  9. 9.
    Lambrix, P., Edberg, A.: Evaluation of ontology merging tools in bioinformatics. In: Pacific Symposium on Biocomputing, pp. 589–600 (2003)Google Scholar
  10. 10.
    Lambrix, P., Habbouche, M., Perez, M.: Evaluation of ontology development tools for bioinformatics. Bioinformatics 19(12), 1564–1571 (2003)CrossRefGoogle Scholar
  11. 11.
    Lambrix, P., Liu, Q.: Using partial reference alignments to align ontologies. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 188–202. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Lambrix, P., Liu, Q., Tan, H.: Repairing the missing is-a structure of ontologies. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 76–90. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Lambrix, P., Tan, H.: SAMBO - a system for aligning and merging biomedical ontologies. Journal of Web Semantics 4(3), 196–206 (2006)CrossRefGoogle Scholar
  14. 14.
    Rodler, P., Shchekotykhin, K., Fleiss, P., Friedrich, G.: Rio: Minimizing user interaction in debugging of aligned ontologies. In: 7th International Workshop on Ontology Matching, pp. 49–60 (2012)Google Scholar
  15. 15.
    Schvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Transactions on Knowledge and Data Engineering 25(1), 158–176 (2013)CrossRefGoogle Scholar
  16. 16.
    Hanif Seddiqui, M., Aono, M.: An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. Journal of Web Semantics 7(4), 344–356 (2008)CrossRefGoogle Scholar
  17. 17.
    Unified Medical Language System, http://www.nlm.nih.gov/research/umls/about_umls.html
  18. 18.
    Tan, H., Jakonienė, V., Lambrix, P., Aberg, J., Shahmehri, N.: Alignment of biomedical ontologies using life science literature. In: Bremer, E.G., Hakenberg, J., Han, E.-H(S.), Berrar, D., Dubitzky, W. (eds.) KDLL 2006. LNCS (LNBI), vol. 3886, pp. 1–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Tan, H., Lambrix, P.: A method for recommending ontology alignment strategies. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 494–507. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patrick Lambrix
    • 1
    • 2
  • Rajaram Kaliyaperumal
    • 1
  1. 1.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden
  2. 2.Swedish e-Science Research CentreLinköping UniversityLinköpingSweden

Personalised recommendations