Broadening the Scope of Nanopublications

  • Tobias Kuhn
  • Paolo Emilio Barbano
  • Mate Levente Nagy
  • Michael Krauthammer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)


In this paper, we present an approach for extending the existing concept of nanopublications — tiny entities of scientific results in RDF representation — to broaden their application range. The proposed extension uses English sentences to represent informal and underspecified scientific claims. These sentences follow a syntactic and semantic scheme that we call AIDA (Atomic, Independent, Declarative, Absolute), which provides a uniform and succinct representation of scientific assertions. Such AIDA nanopublications are compatible with the existing nanopublication concept and enjoy most of its advantages such as information sharing, interlinking of scientific findings, and detailed attribution, while being more flexible and applicable to a much wider range of scientific results. We show that users are able to create AIDA sentences for given scientific results quickly and at high quality, and that it is feasible to automatically extract and interlink AIDA nanopublications from existing unstructured data sources. To demonstrate our approach, a web-based interface is introduced, which also exemplifies the use of nanopublications for non-scientific content, including meta-nanopublications that describe other nanopublications.


User Study Short Text English Sentence GeneRIF Sentence Semantic Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In: WWW 2005, pp. 613–622. ACM (2005)Google Scholar
  2. 2.
    Ciccarese, P., Wu, E., Wong, G., Ocana, M., Kinoshita, J., Ruttenberg, A., Clark, T.: The SWAN biomedical discourse ontology. Journal of Biomedical Informatics 41(5), 739–751 (2008)CrossRefGoogle Scholar
  3. 3.
    Clark, T., Kinoshita, J.: Alzforum and SWAN: The present and future of scientific web communities. Briefings in Bioinformatics 8(3), 163–171 (2007)CrossRefGoogle Scholar
  4. 4.
    de Waard, A., Schneider, J.: Formalising uncertainty: An ontology of reasoning, certainty and attribution (ORCA). In: SATBI+SWIM 2012 (2012)Google Scholar
  5. 5.
    Everitt, B.S.: Cluster Analysis, 3rd edn. Edward Arnold and Halsted Press (1993)Google Scholar
  6. 6.
    Groth, P., Gibson, A., Velterop, J.: The anatomy of a nano-publication. Information Services and Use 30(1), 51–56 (2010)Google Scholar
  7. 7.
    King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L.N., Sparkes, A., Whelan, K.E., Clare, A.: The automation of science. Science 324(5923), 85–89 (2009)CrossRefGoogle Scholar
  8. 8.
    Kuhn, T., Krauthammer, M.: Underspecified scientific claims in nanopublications. In: WoLE 2012, pp. 29–32. CEUR-WS (2012)Google Scholar
  9. 9.
    Kuhn, T., Royer, L., Fuchs, N.E., Schröder, M.: Improving text mining with controlled natural language: A case study for protein interactions. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 66–81. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Mons, B., van Haagen, H., Chichester, C., den Dunnen, J.T., van Ommen, G., van Mulligen, E., Singh, B., Hooft, R., Roos, M., Hammond, J., Kiesel, B., Giardine, B., Velterop, J., Groth, P., Schultes, E.: The value of data. Nature Genetics 43(4), 281–283 (2011)CrossRefGoogle Scholar
  11. 11.
    Rector, A.L., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang, H., Wroe, C.: OWL pizzas: Practical experience of teaching OWL-DL: Common errors & common patterns. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 63–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Seringhaus, M.R., Gerstein, M.B.: Publishing perishing? Towards tomorrow’s information architecture. BMC Bioinformatics 8(1), 17 (2007)CrossRefGoogle Scholar
  13. 13.
    Soldatova, L.N., King, R.D.: An ontology of scientific experiments. Journal of the Royal Society Interface 3(11), 795–803 (2006)CrossRefGoogle Scholar
  14. 14.
    Soldatova, L.N., Rzhetsky, A., King, R.D.: Representation of research hypotheses. J. Biomed Semantics 2(suppl. 2), S9 (2011)CrossRefGoogle Scholar
  15. 15.
    Wyner, A., Angelov, K., Barzdins, G., Damljanovic, D., Davis, B., Fuchs, N., Hoefler, S., Jones, K., Kaljurand, K., Kuhn, T., Luts, M., Pool, J., Rosner, M., Schwitter, R., Sowa, J.: On controlled natural languages: Properties and prospects. In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 281–289. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tobias Kuhn
    • 1
    • 2
  • Paolo Emilio Barbano
    • 3
  • Mate Levente Nagy
    • 4
  • Michael Krauthammer
    • 4
    • 1
  1. 1.Department of PathologyYale UniversityNew HavenUSA
  2. 2.Chair of Sociology, in particular of Modeling and SimulationETH ZurichSwitzerland
  3. 3.Department of MathematicsYale UniversityUSA
  4. 4.Program for Computational Biology and BioinformaticsYale UniversityUSA

Personalised recommendations