Opening the Black Box of Ontology Matching

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)


Due to the high heterogeneity of ontologies, a combination of many methods is necessary in order to discover correctly the semantic correspondences between their elements. An ontology matching tool can be seen as a collection of several matching components, each implementing a specific method dealing with a specific heterogeneity type (terminological, structural or semantic). In addition, a mapping selection module is introduced to filter out the most likely mapping candidates. This paper proposes an empirical study of the interaction between these components working together inside an ontology matching system. By the help of datasets from the Ontology Alignment Evaluation Initiative, we have carried out several experimental studies. In the first place, we have been interested in the impact of the mapping selection module on the performance of terminological and structural matchers revealing the advantage of using global methods vs. local ones. Further, we have carried an extensive study on the flaw of the performance of a structural matcher in the presence of noisy input coming from a terminological method. Finally, we have analyzed the behavior of a structural and a semantic component with respect to inputs taken from different terminological matchers.


  1. 1.
    Cruz, I.F., Stroe, C., Caci, M., Caimi, F., Palmonari, M., Antonelli, F.P., Keles, U.C.: Using agreementmaker to align ontologies for oaei 2010. In: OM (2010)Google Scholar
  2. 2.
    Dieng, R., Hug, S.: Comparison of personal ontologies represented through conceptual graphs. In: ECAI, pp. 341–345 (1998)Google Scholar
  3. 3.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  4. 4.
    Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an implementation of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Huber, J., Sztyler, T., Nößner, J., Meilicke, C.: Codi: Combinatorial optimization for data integration: results for oaei 2011. In: OM (2011)Google Scholar
  6. 6.
    Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with semantic verification. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 235–251 (2009)CrossRefGoogle Scholar
  7. 7.
    Jian, N., Hu, W., Cheng, G., Qu, Y.: Falcon-ao: Aligning ontologies with falcon. In: Proceedings of K-CAP Workshop on Integrating Ontologies, pp. 85–91 (2005)Google Scholar
  8. 8.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. CoRR (1997)Google Scholar
  9. 9.
    Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and scalable ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Thanh Le, B., Dieng-Kuntz, R., Gandon, F.: On ontology matching problems. In: ICEIS (4), pp. 236–243 (2004)Google Scholar
  11. 11.
    Lin, D.: An information-theoretic definition of similarity. In: ICML, pp. 296–304 (1998)Google Scholar
  12. 12.
    Mao, M., Peng, Y., Spring, M.: A harmony based adaptive ontology mapping approach. In: SWWS, pp. 336–342 (2008)Google Scholar
  13. 13.
    Meilicke, C.: Alignment incoherence in ontology matching. Thesis (2011)Google Scholar
  14. 14.
    Meilicke, C., Stuckenschmidt, H.: Analyzing mapping extraction approaches. In: OM (2007)Google Scholar
  15. 15.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In: ICDE, pp. 117–128 (2002)Google Scholar
  16. 16.
    Ngo, D., Bellahsene, Z., Coletta, R.: A generic approach for combining linguistic and context profile metrics in ontology matching. In: Meersman, R., et al. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 800–807. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Ngo, D., Bellahsene, Z., Coletta, R.: A flexible system for ontology matching. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp. 79–94. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Ngo, D.H.: Enhancing Ontology Matching by Using Machine Learning, Graph Matching and Information Retrieval Techniques. PhD thesis, University of Montpellier 2 (2012) (in print)Google Scholar
  19. 19.
    Ngo, D.H., Bellasene, Z., Coletta, R.: Yam++ results for oaei 2011. In: OM (2011)Google Scholar
  20. 20.
    Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE TKDE 99 (2011)Google Scholar
  21. 21.
    Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Sunna, W., Cruz, I.F.: Structure-based methods to enhance geospatial ontology alignment. In: Fonseca, F., Rodríguez, M.A., Levashkin, S. (eds.) GeoS 2007. LNCS, vol. 4853, pp. 82–97. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)CrossRefGoogle Scholar
  24. 24.
    Wang, P., Xu, B.: Lily: Ontology alignment results for oaei 2009. In: OM (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.LIRMMUniversité Montpellier 2MontpellierFrance

Personalised recommendations