Advertisement

Semantic Multimedia Information Retrieval Based on Contextual Descriptions

  • Nadine Steinmetz
  • Harald Sack
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)

Abstract

Semantic analysis and annotation of textual information with appropriate semantic entities is an essential task to enable content based search on the annotated data. For video resources textual information is rare at first sight. But in recent years the development of technologies for automatic extraction of textual information from audio visual content has advanced. Additionally, video portals allow videos to be annotated with tags and comments by authors as well as users. All this information taken together forms video metadata which is manyfold in various ways. By making use of the characteristics of the different metadata types context can be determined to enable sound and reliable semantic analysis and to support accuracy of understanding the video’s content. This paper proposes a description model of video metadata for semantic analysis taking into account various contextual factors.

Keywords

context model semantic analysis video analysis metadata analysis named entity recognition 

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, pp. 335–336. ACM, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Bazire, M., Brézillon, P.: Understanding context before using it. In: Dey, A.K., Kokinov, B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 29–40. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bryl, V., Giuliano, C., Serafini, L., Tymoshenko, K.: Supporting natural language processing with background knowledge: Coreference resolution case. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 80–95. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Damljanovic, D., Bontcheva, K.: Named entity disambiguation using linked data. In: 9th Extended Semantic Web Conference (ESWC 2012) (May 2012)Google Scholar
  5. 5.
    Dewey, J.: Context and thought, vol. 12. University of California publications in philosophy (1931)Google Scholar
  6. 6.
    Dourish, P.: What we talk about when we talk about context. Personal Ubiquitous Comput. 8(1), 19–30 (2004)CrossRefGoogle Scholar
  7. 7.
    Lenat, D.: The dimensions of context-space. Technical report, Cycorp (1998)Google Scholar
  8. 8.
    Ludwig, N., Sack, H.: Named entity recognition for user-generated tags. In: Proceedings of the 2011 22nd International Workshop on Database and Expert Systems Applications, DEXA 2011, pp. 177–181. IEEE Computer Society, Washington, DC (2011)CrossRefGoogle Scholar
  9. 9.
    Manning, C.D.: Part-of-speech tagging from 97% to 100%: Is it time for some linguistics? In: Gelbukh, A.F. (ed.) CICLing 2011, Part I. LNCS, vol. 6608, pp. 171–189. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Mehra, P.: Context-aware computing: Beyond search and location-based services. IEEE Internet Computing 16, 12–16 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mendes, P.N., Jacob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: Shedding light on the web of documents. In: Proc. of 7th Int. Conf. on Semantic Systems, Graz, Austria, September 7-9 (2011)Google Scholar
  12. 12.
    Mihalcea, R., Csomai, A.: Wikify!: Linking documents to encyclopedic knowledge. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, CIKM 2007, pp. 233–242. ACM, New York (2007)CrossRefGoogle Scholar
  13. 13.
    Mostefa Djamel, C.K., Olivier, H.: Evaluation of Automatic Speech Recognition and Speech Language Translation within TC-STAR: Results from the first evaluation campaign. In: Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006), Genoa, Italy. ELRA (May 2006)Google Scholar
  14. 14.
    Sen, P.: Collective context-aware topic models for entity disambiguation. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 729–738. ACM, New York (2012)CrossRefGoogle Scholar
  15. 15.
    Wactlar, H.D., Hauptmann, A.G., Christel, M.G., Houghton, R.A., Olligschlaeger, A.M.: Complementary video and audio analysis for broadcast news archives. Commun. ACM 43(2), 42–47 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nadine Steinmetz
    • 1
  • Harald Sack
    • 1
  1. 1.Hasso Plattner Institute for Software Systems EngineeringPotsdamGermany

Personalised recommendations