Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

Extended Semantic Web Conference

ESWC 2013: The Semantic Web: Semantics and Big Data pp 351–366Cite as

  1. Home
  2. The Semantic Web: Semantics and Big Data
  3. Conference paper
A Comparison of Knowledge Extraction Tools for the Semantic Web

A Comparison of Knowledge Extraction Tools for the Semantic Web

  • Aldo Gangemi21,22 
  • Conference paper
  • 5114 Accesses

  • 60 Citations

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7882)

Abstract

In the last years, basic NLP tasks: NER, WSD, relation extraction, etc. have been configured for Semantic Web tasks including ontology learning, linked data population, entity resolution, NL querying to linked data, etc. Some assessment of the state of art of existing Knowledge Extraction (KE) tools when applied to the Semantic Web is then desirable. In this paper we describe a landscape analysis of several tools, either conceived specifically for KE on the Semantic Web, or adaptable to it, or even acting as aggregators of extracted data from other tools. Our aim is to assess the currently available capabilities against a rich palette of ontology design constructs, focusing specifically on the actual semantic reusability of KE output.

Keywords

  • Natural Language Processing
  • Word Sense Disambiguation
  • Entity Recognition
  • Relation Extraction
  • Knowledge Extraction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download conference paper PDF

References

  1. Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entailment methods. CoRR, abs/0912.3747 (2009)

    Google Scholar 

  2. Banko, M., Etzioni, O.: The tradeoffs between open and traditional relation extraction. In: Annual Meeting of the ACL (2008)

    Google Scholar 

  3. Berry, M.W., Castellanos, M.: Survey of Text Mining II: Clustering, Classification and Retrieval. Springer (2008)

    Google Scholar 

  4. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM Transactions on Knowledge Discovery from Data (ACM-TKDD) (2007)

    Google Scholar 

  5. Blomqvist, E.: Ontocase-automatic ontology enrichment based on ontology design patterns. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 65–80. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  6. Bos, J.: Wide-Coverage Semantic Analysis with Boxer. In: Bos, J., Delmonte, R. (eds.) Semantics in Text Processing, pp. 277–286. College Publications (2008)

    Google Scholar 

  7. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2004, pp. 25–32. ACM, New York (2004)

    CrossRef  Google Scholar 

  8. Ciaramita, M., Altun, Y.: Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In: Proceedings of EMNLP 2006, Sydney, Australia (2006)

    Google Scholar 

  9. Ciaramita, M., Gangemi, A., Ratsch, E., Saric, J., Rojas, I.: Unsupervised learning of semantic relations between concepts of a molecular biology ontology. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005 (2005)

    Google Scholar 

  10. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer (2006)

    Google Scholar 

  11. Cimiano, P., Völker, J.: Text2onto - a framework for ontology learning and data-driven change discovery (2005)

    Google Scholar 

  12. Coppola, B., Gangemi, A., Gliozzo, A., Picca, D., Presutti, V.: Frame detection over the semantic web. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 126–142. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  13. Davis, J., Domingos, P.: Deep transfer: A markov logic approach. AI Magazine 32(1), 51–53 (2011)

    Google Scholar 

  14. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proc. of the Conference of Empirical Methods in Natural Language Processing, EMNLP 2011, Edinburgh, Scotland, UK (2011)

    Google Scholar 

  15. Francopoulo, G., George, M., Calzolari, N., Monachini, M., Bel, N., Pet, M., Soria, C.: Lexical markup framework (LMF). In: Proc. of the International Conference on Language Resources and Evaluation, LREC, Genoa, Italy. ACL (2006)

    Google Scholar 

  16. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn. Springer (2009)

    Google Scholar 

  17. Rizzo, G., Troncy, R., Hellmann, S., Bruemmer, M.: NERD meets NIF: Lifting NLP extraction results to the linked data cloud. In: LDOW, 5th Wks. on Linked Data on the Web, Lyon, France (April 2012)

    Google Scholar 

  18. Hartmann, S., Szarvas, G., Gurevych, I.: Mining multiword terms from wikipedia. In: Pazienza, M.T., Stellato, A. (eds.) Semi-Automatic Ontology Development: Processes and Resources, pp. 226–258. IGI Global, Hershey (2012)

    CrossRef  Google Scholar 

  19. Hellmann, S., Lehmann, J., Auer, S.: Linked-data aware URI schemes for referencing text fragments. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 175–184. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  20. Hogenboom, F., Frasincar, F., Kaymak, U., de Jong, F.: An overview of event extraction from text. In: Proceedings of Derive 2011 Workshop, Bonn (2011)

    Google Scholar 

  21. Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J.A.G., Janssen, T.M.V., Stokhof, M.B.J. (eds.) Formal Methods in the Study of Language, vol. 1, pp. 277–322. Mathematisch Centrum (1981)

    Google Scholar 

  22. Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - A Crystallization Point for the Web of Data. Journal of Web Semantics 7(3), 154–165 (2009)

    CrossRef  Google Scholar 

  23. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems 16, 72–79 (2001)

    CrossRef  Google Scholar 

  24. McCrae, J., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies on the semantic web with lemon. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 245–259. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  25. Miles, A., Bechhofer, S.: Skos simple knowledge organization system extension for labels (skos-xl). W3C Recommendation (2009), http://www.w3.org/TR/skos-reference/skos-xl.html

  26. Moschitti, A., Pighin, D., Basili, R.: Tree kernels for semantic role labeling. Computational Linguistics 34(2), 193–224 (2008)

    CrossRef  MathSciNet  Google Scholar 

  27. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Journal of Linguisticae Investigationes 30(1) (2007)

    Google Scholar 

  28. Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41(2) (2009)

    Google Scholar 

  29. Ng, V.: Supervised noun phrase coreference research: The first fifteen years. In: ACL (2010)

    Google Scholar 

  30. Nuzzolese, A.G., Gangemi, A., Presutti, V.: Gathering Lexical Linked Data and Knowledge Patterns from FrameNet. In: Proc. of the 6th International Conference on Knowledge Capture (K-CAP), Banff, Alberta, Canada, pp. 41–48 (2011)

    Google Scholar 

  31. Pazienza, M.T., Stellato, A.: Semi-Automatic Ontology Development: Processes and Resources. IGI Global, Hershey (2012)

    CrossRef  Google Scholar 

  32. Peters, W., Montiel-Ponsoda, E., Aguado de Cea, G., Gomez-Perez, A.: Localizing ontologies in owl. In: Proceedings of OntoLex Workshop (2007), http://olp.dfki.de/OntoLex07/

  33. Ponzetto, S.P., Strube, M.: Taxonomy induction based on a collaboratively built knowledge repository. Artificial Intelligence 175 (2011)

    Google Scholar 

  34. Presutti, V., Draicchio, F., Gangemi, A.: Knowledge extraction based on discourse representation theory and linguistic frames. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 114–129. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  35. Völker, J., Rudolph, S.: Lexico-logical acquisition of owl dl axioms – an integrated approach to ontology refinement (2008)

    Google Scholar 

  36. Yosef, M.A., Hoffart, J., Bordino, I., Spaniol, M., Weikum, G.: Aida: An online tool for accurate disambiguation of named entities in text and tables. In: Proceedings of the 37th International Conference on Very Large Databases, VLDB 2011, Seattle, WA, US (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. LIPN, Université Paris13-CNRS-SorbonneCité, France

    Aldo Gangemi

  2. STLab, ISTC-CNR, Rome, Italy

    Aldo Gangemi

Authors
  1. Aldo Gangemi
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. CITEC, University of Bielefeld, 33615, Bielefeld, Germany

    Philipp Cimiano

  2. Universidad Politécnica de Madrid, 28660, Boadilla del Monte, Spain

    Oscar Corcho

  3. National Research Council, 00136, Rome, Italy

    Valentina Presutti

  4. Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands

    Laura Hollink

  5. Technische Universität Dresden, 01069, Dresden, Germany

    Sebastian Rudolph

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gangemi, A. (2013). A Comparison of Knowledge Extraction Tools for the Semantic Web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds) The Semantic Web: Semantics and Big Data. ESWC 2013. Lecture Notes in Computer Science, vol 7882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38288-8_24

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-38288-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38287-1

  • Online ISBN: 978-3-642-38288-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.94.236

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.