Representation and Querying of Valid Time of Triples in Linked Geospatial Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7882)


We introduce the temporal component of the stRDF data model and the stSPARQL query language, which have been recently proposed for the representation and querying of linked geospatial data that changes over time. With this temporal component in place, stSPARQL becomes a very expressive query language for linked geospatial data, going beyond the recent OGC standard GeoSPARQL, which has no support for valid time of triples. We present the implementation of the stSPARQL temporal component in the system Strabon, and study its performance experimentally. Strabon is shown to outperform all the systems it has been compared with.


Query Language Geospatial Data Triple Pattern Query Engine Open Geospatial Consortium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Open Geospatial Consortium. OGC GeoSPARQL - A geographic query language for RDF data. OGC Candidate Implementation Standard (2012)Google Scholar
  2. 2.
    Al-Kateb, M., Ghazal, A., Crolotte, A., Bhashyam, R., Chimanchode, J., Pakala, S.P.: Temporal Query Processing in Teradata. In: ICDT (2013)Google Scholar
  3. 3.
    Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26(11) (1983)Google Scholar
  4. 4.
    Boelen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in Temporal Databases. IEEE CS 19, 35–42 (1996)Google Scholar
  5. 5.
    Clifford, J., Dyreson, C., Isakowitz, T., Jensen, C.S., Snodgrass, R.T.: On the semantics of now in databases. ACM TODS 22(2), 171–214 (1997)CrossRefGoogle Scholar
  6. 6.
    Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal data and the relational model. Elsevier (2002)Google Scholar
  7. 7.
    Grandi, F.: T-SPARQL: a TSQL2-like temporal query language for RDF. In: International Workshop on Querying Graph Structured Data, pp. 21–30 (2010)Google Scholar
  8. 8.
    Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal RDF. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 93–107. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing Time into RDF. IEEE TKDE 19(2), 207–218 (2007)Google Scholar
  10. 10.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM TODS 25(1), 1–42 (2000)CrossRefGoogle Scholar
  11. 11.
    Hurtado, C.A., Vaisman, A.A.: Reasoning with Temporal Constraints in RDF. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 164–178. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Koubarakis, M., Karpathiotakis, M., Kyzirakos, K., Nikolaou, C., Sioutis, M.: Data Models and Query Languages for Linked Geospatial Data. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 290–328. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Koubarakis, M., Kyzirakos, K.: Modeling and Querying Metadata in the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL. In: Aroyo, L., et al. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A Semantic Geospatial DBMS. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Lopes, N., Polleres, A., Straccia, U., Zimmermann, A.: AnQL: SPARQLing Up Annotated RDFS. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 518–533. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Meiri, I.: Combining qualitative and quantitative constraints in temporal reasoning. Artificial Intelligence 87(1-2), 343–385 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Motik, B.: Representing and Querying Validity Time in RDF and OWL: A Logic-Based Approach. Journal of Web Semantics 12-13, 3–21 (2012)Google Scholar
  18. 18.
    Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowledge about information systems. ACM TIS (1990)Google Scholar
  19. 19.
    Perry, M.: A Framework to Support Spatial, Temporal and Thematic Analytics over Semantic Web Data. Ph.D. thesis, Wright State University (2008)Google Scholar
  20. 20.
    Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Springer (1995)Google Scholar
  21. 21.
    Sripada, S.M.: A logical framework for temporal deductive databases. In: Bancilhon, F., DeWitt, D. (eds.) VLDB, pp. 171–182. M. Kaufmann Publ. Inc. (1988)Google Scholar
  22. 22.
    Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying of RDF Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.National and Kapodistrian University of AthensGreece

Personalised recommendations