Skip to main content

Instance-Based Ontological Knowledge Acquisition

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7882)

Abstract

The Linked Open Data (LOD) cloud contains tremendous amounts of interlinked instances, from where we can retrieve abundant knowledge. However, because of the heterogeneous and big ontologies, it is time consuming to learn all the ontologies manually and it is difficult to observe which properties are important for describing instances of a specific class. In order to construct an ontology that can help users easily access to various data sets, we propose a semi-automatic ontology integration framework that can reduce the heterogeneity of ontologies and retrieve frequently used core properties for each class. The framework consists of three main components: graph-based ontology integration, machine-learning-based ontology schema extraction, and an ontology merger. By analyzing the instances of the linked data sets, this framework acquires ontological knowledge and constructs a high-quality integrated ontology, which is easily understandable and effective in knowledge acquisition from various data sets using simple SPARQL queries.

Keywords

  • Semantic Web
  • linked data
  • ontology integration
  • knowledge acquisition
  • machine learning

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the Twentieth International Conference on Very Large Data Bases, pp. 487–499 (1994)

    Google Scholar 

  2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommendation (2004), http://www.w3.org/TR/owl-ref/

  3. Berners-Lee, T.: Linked Data - Design Issues (2006), http://www.w3.org/DesignIssues/LinkedData.html

  4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

    CrossRef  Google Scholar 

  5. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  6. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)

    Google Scholar 

  7. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool (2011)

    Google Scholar 

  8. Ichise, R.: An analysis of multiple similarity measures for ontology mapping problem. International Journal of Semantic Computing 4(1), 103–122 (2010)

    MATH  CrossRef  Google Scholar 

  9. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for linked open data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  10. Kohavi, R.: The power of decision tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)

    CrossRef  Google Scholar 

  11. Le, N.T., Ichise, R., Le, H.B.: Detecting hidden relations in geographic data. In: Proceedings of the 4th International Conference on Advances in Semantic Processing, pp. 61–68 (2010)

    Google Scholar 

  12. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

  13. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging mappings between lightweight ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  14. Parundekar, R., Knoblock, C.A., Ambite, J.L.: Discovering concept coverings in ontologies of linked data sources. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 427–443. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  15. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet: similarity: Measuring the relatedness of concepts. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence, pp. 1024–1025. Association for Computational Linguistics (2004)

    Google Scholar 

  16. W3C OWL Working Group: OWL 2 Web Ontology Language Document Overview. W3C Recommendation (2012), http://www.w3.org/TR/owl2-overview/

  17. Winkler, W.E.: Overview of record linkage and current research directions. Tech. rep., Statistical Research Division U.S. Bureau of the Census (2006)

    Google Scholar 

  18. Zhao, L., Ichise, R.: Graph-based ontology analysis in the linked open data. In: Proceedings of the Eighth International Conference on Semantic Systems, pp. 56–63. ACM (2012)

    Google Scholar 

  19. Zhao, L., Ichise, R.: Integrating ontologies using ontology learning approach. IEICE Transactions on Information and Systems E96-D(1), 40–50 (2013)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, L., Ichise, R. (2013). Instance-Based Ontological Knowledge Acquisition. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds) The Semantic Web: Semantics and Big Data. ESWC 2013. Lecture Notes in Computer Science, vol 7882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38288-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38288-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38287-1

  • Online ISBN: 978-3-642-38288-8

  • eBook Packages: Computer ScienceComputer Science (R0)